472 research outputs found

    The mechanism of action of T7 DNA polymerase

    Get PDF
    The recent crystal structure determination of T7 DNA polymerase complexed to a deoxynucleoside triphosphate and primer-template DNA has provided the first glimpse of a replicative DNA polymerase in a catalytic complex. The structure complements many functional and structural studies of this and other DNA polymerases, allowing a detailed evaluation of proposals for the mechanism of nucleotidyl transfer and the exploration of the basis for the high fidelity of template-directed DNA synthesis

    The Soul of a New Structure-Function Machine

    Get PDF

    Crystallization and preliminary X-ray analysis of the 9 kDa protein of the mouse signal recognition particle and the selenomethionyl-SRP9

    Get PDF
    AbstractTwo different crystal forms of the 9 kDa protein of the signal recognition particle (SRP9) have been prepared by the hanging drop vapor diffusion technique using 28% (w/v) PEG8000 or 28% saturated ammonium sulphate as precipitant. The crystals are hexagonal bipyramids with average dimensions of 0.2 × 0.1 × 0.1 mm3 and they diffract to a resolution of 2.3 Å. They belong to the space groups P6222/P6422 or P3121/P3221 with cell dimensions a = b = 63.0 Å, and c = 111.5 Å. Crystals have also been grown from the selenomethionyl protein and multiwavelength data sets have been collected

    Wrapping the alpha-crystallin domain fold in a chaperone assembly

    Get PDF
    Small heat shock proteins (sHsps) are oligomers that perform a protective function by binding denatured proteins. Although ubiquitous, they are of variable sequence except for a C-terminal similar to 90-residue "alpha-crystallin domain". Unlike larger stress response chaperones, sHsps are ATP-independent and generally form polydisperse assemblies. One proposed mechanism of action involves these assemblies breaking into smaller subunits in response to stress, before binding unfolding substrate and reforming into larger complexes. Two previously solved non-metazoan sHsp multimers are built from dimers formed by domain swapping between the alpha-crystallin domains,. adding to evidence that the smaller subunits are dimers. Here, the 2.5 angstrom resolution structure of an sHsp from the parasitic flatworm Taenia saginata Tsp36, the first metazoan crystal structure, shows a new mode of dimerization involving N-terminal regions, which differs from that seen for non-metazoan sHsps. Sequence differences in the a-crystallin domains between metazoans and nonmetazoans are critical to the different mechanism of dimerization, suggesting that some structural features seen for Tsp36 may be generalized to other metazoan sHsps. The structure also indicates scope for flexible assembly of subunits, supporting the proposed process of oligomer breakdown, substrate binding and reassembly as the chaperone mechanism. It further shows how sHsps can bind coil and secondary structural elements by wrapping them around the alpha-crystallin domain. The structure also illustrates possible roles for conserved residues associated with disease, and suggests a mechanism for the sHsp-related pathogenicity of some flatworm infections. Tsp36, like other flatworm sHsps, possesses two divergent sHsp repeats per monomer. Together with the two previously solved structures, a total of four alpha-crystallin domain structures are now available, giving a better definition of domain boundaries for sHsps

    Crystal structure of the 25 kDa subunit of human cleavage factor Im

    Get PDF
    Cleavage factor Im is an essential component of the pre-messenger RNA 3′-end processing machinery in higher eukaryotes, participating in both the polyadenylation and cleavage steps. Cleavage factor Im is an oligomer composed of a small 25 kDa subunit (CF Im25) and a variable larger subunit of either 59, 68 or 72 kDa. The small subunit also interacts with RNA, poly(A) polymerase, and the nuclear poly(A)-binding protein. These protein–protein interactions are thought to be facilitated by the Nudix domain of CF Im25, a hydrolase motif with a characteristic α/β/α fold and a conserved catalytic sequence or Nudix box. We present here the crystal structures of human CF Im25 in its free and diadenosine tetraphosphate (Ap4A) bound forms at 1.85 and 1.80 Å, respectively. CF Im25 crystallizes as a dimer and presents the classical Nudix fold. Results from crystallographic and biochemical experiments suggest that CF Im25 makes use of its Nudix fold to bind but not hydrolyze ATP and Ap4A. The complex and apo protein structures provide insight into the active oligomeric state of CF Im and suggest a possible role of nucleotide binding in either the polyadenylation and/or cleavage steps of pre-messenger RNA 3′-end processing

    An unnatural base pair system for efficient PCR amplification and functionalization of DNA molecules

    Get PDF
    Toward the expansion of the genetic alphabet, we present an unnatural base pair system for efficient PCR amplification, enabling the site-specific incorporation of extra functional components into DNA. This system can be applied to conventional PCR protocols employing DNA templates containing unnatural bases, natural and unnatural base triphosphates, and a 3′→5′ exonuclease-proficient DNA polymerase. For highly faithful and efficient PCR amplification involving the unnatural base pairing, we identified the natural-base sequences surrounding the unnatural bases in DNA templates by an in vitro selection technique, using a DNA library containing the unnatural base. The system facilitates the site-specific incorporation of a variety of modified unnatural bases, linked with functional groups of interest, into amplified DNA. DNA fragments (0.15 amol) containing the unnatural base pair can be amplified 107-fold by 30 cycles of PCR, with <1% total mutation rate of the unnatural base pair site. Using the system, we demonstrated efficient PCR amplification and functionalization of DNA fragments for the extremely sensitive detection of zeptomol-scale target DNA molecules from mixtures with excess amounts (pmol scale) of foreign DNA species. This unnatural base pair system will be applicable to a wide range of DNA/RNA-based technologies

    Conformational landscapes of DNA polymerase I and mutator derivatives establish fidelity checkpoints for nucleotide insertion

    Get PDF
    The fidelity of DNA polymerases depends on conformational changes that promote the rejection of incorrect nucleotides before phosphoryl transfer. Here, we combine single-molecule FRET with the use of DNA polymerase I and various fidelity mutants to highlight mechanisms by which active-site side chains influence the conformational transitions and free-energy landscape that underlie fidelity decisions in DNA synthesis. Ternary complexes of high fidelity derivatives with complementary dNTPs adopt mainly a fully closed conformation, whereas a conformation with a FRET value between those of open and closed is sparsely populated. This intermediate-FRET state, which we attribute to a partially closed conformation, is also predominant in ternary complexes with incorrect nucleotides and, strikingly, in most ternary complexes of low-fidelity derivatives for both correct and incorrect nucleotides. The mutator phenotype of the low-fidelity derivatives correlates well with reduced affinity for complementary dNTPs and highlights the partially closed conformation as a primary checkpoint for nucleotide selection

    Iminodiacetic-phosphoramidates as metabolic prototypes for diversifying nucleic acid polymerization in vivo

    Get PDF
    Previous studies in our laboratory proved that certain functional groups are able to mimic the pyrophosphate moiety and act as leaving groups in the enzymatic polymerization of deoxyribonucleic acids by HIV-1 reverse transcriptase. When the potential leaving group possesses two carboxylic acid moieties linked to the nucleoside via a phosphoramidate bond, it is efficiently recognized by this error-prone enzyme, resulting in nucleotide incorporation into DNA. Here, we present a new efficient alternative leaving group, iminodiacetic acid, which displays enhanced kinetics and an enhanced elongation capacity compared to previous results obtained with amino acid deoxyadenosine phosphoramidates. Iminodiacetic acid phosphoramidate of deoxyadenosine monophosphate (IDA-dAMP) is processed by HIV-1 RT as a substrate for single nucleotide incorporation and displays a typical Michaelis–Menten kinetic profile. This novel substrate also proved to be successful in primer strand elongation of a seven-base template overhang. Modelling of this new substrate in the active site of the enzyme revealed that the interactions formed between the triphosphate moiety, magnesium ions and enzyme's residues could be different from those of the natural triphosphate substrate and is likely to involve additional amino acid residues. Preliminary testing for a potential metabolic accessibility lets us to envision its possible use in an orthogonal system for nucleic acid synthesis that would not influence or be influenced by genetic information from the outside
    corecore