2,830 research outputs found

    Miami Issue

    Get PDF

    Unsteady aerodynamics of blade rows

    Get PDF
    The requirements placed on an unsteady aerodynamic theory intended for turbomachinery aeroelastic or aeroacoustic applications are discussed along with a brief description of the various theoretical models that are available to address these requirements. The major emphasis is placed on the description of a linearized inviscid theory which fully accounts for the affects of a nonuniform mean or steady flow on unsteady aerodynamic response. Although this linearization was developed primarily for blade flutter prediction, more general equations are presented which account for unsteady excitations due to incident external aerodynamic disturbances as well as those due to prescribed blade motions. The motivation for this linearized unsteady aerodynamic theory is focused on, its physical and mathematical formulation is outlined and examples are presented to illustrate the status of numerical solution procedures and several effects of mean flow nonuniformity on unsteady aerodynamic response

    Development of a steady potential solver for use with linearized, unsteady aerodynamic analyses

    Get PDF
    A full potential steady flow solver (SFLOW) developed explicitly for use with an inviscid unsteady aerodynamic analysis (LINFLO) is described. The steady solver uses the nonconservative form of the nonlinear potential flow equations together with an implicit, least squares, finite difference approximation to solve for the steady flow field. The difference equations were developed on a composite mesh which consists of a C grid embedded in a rectilinear (H grid) cascade mesh. The composite mesh is capable of resolving blade to blade and far field phenomena on the H grid, while accurately resolving local phenomena on the C grid. The resulting system of algebraic equations is arranged in matrix form using a sparse matrix package and solved by Newton's method. Steady and unsteady results are presented for two cascade configurations: a high speed compressor and a turbine with high exit Mach number

    Development of a linearized unsteady aerodynamic analysis for cascade gust response predictions

    Get PDF
    A method for predicting the unsteady aerodynamic response of a cascade of airfoils to entropic, vortical, and acoustic gust excitations is being developed. Here, the unsteady flow is regarded as a small perturbation of a nonuniform isentropic and irrotational steady background flow. A splitting technique is used to decompose the linearized unsteady velocity into rotational and irrotational parts leading to equations for the complex amplitudes of the linearized unsteady entropy, rotational velocity, and velocity potential that are coupled only sequentially. The entropic and rotational velocity fluctuations are described by transport equations for which closed-form solutions in terms of the mean-flow drift and stream functions can be determined. The potential fluctuation is described by an inhomogeneous convected wave equation in which the source term depends on the rotational velocity field, and is determined using finite-difference procedures. The analytical and numerical techniques used to determine the linearized unsteady flow are outlined. Results are presented to indicate the status of the solution procedure and to demonstrate the impact of blade geometry and mean blade loading on the aerodynamic response of cascades to vortical gust excitations. The analysis described herein leads to very efficient predictions of cascade unsteady aerodynamic response phenomena making it useful for turbomachinery aeroelastic and aeroacoustic design applications

    Development of an unsteady aerodynamic analysis for finite-deflection subsonic cascades

    Get PDF
    An unsteady potential flow analysis, which accounts for the effects of blade geometry and steady turning, was developed to predict aerodynamic forces and moments associated with free vibration or flutter phenomena in the fan, compressor, or turbine stages of modern jet engines. Based on the assumption of small amplitude blade motions, the unsteady flow is governed by linear equations with variable coefficients which depend on the underlying steady low. These equations were approximated using difference expressions determined from an implicit least squares development and applicable on arbitrary grids. The resulting linear system of algebraic equations is block tridiagonal, which permits an efficient, direct (i.e., noniterative) solution. The solution procedure was extended to treat blades with rounded or blunt edges at incidence relative to the inlet flow

    Agricultural labour and the contested nature of women's work in interwar England and Wales

    Get PDF
    This article uses a case-study of agriculture to explore the range of anxieties and contradictions surrounding women's work in the interwar period. National statistics are shown to be inconsistent and questionable, raising questions for historians reliant on official data, but they point to regional variation as the continuous defining feature of female labour force participation. Looking beyond the quantitative data a distinction emerges between traditional work on the land and processes. The article shows that women workers in agriculture provoked vigorous debate among a range of interest groups about the scale, nature, and suitability of this work. These groups, such as the National Federation of Women's Institutes, the Women's Farm and Garden Association, and the National Union of Agricultural Workers represented a range of social classes and outlooks, and had diverse agendas underpinning their interest. Consequently women's agricultural labour is exposed as a site of class and gender conflict, connecting to wider economic and cultural tensions surrounding the place of women in interwar society
    • …
    corecore