11 research outputs found

    Highly Enantioselective Catalytic Asymmetric Synthesis of a (R)-Sibutramin Precursor

    Get PDF
    The first highly enantioselective, catalytic asymmetric synthesis of di-des-methylsibutramine 3 is described. Dienamide 10, prepared by acetic acid anhydride quenching of the condensation product of nitrile 4 with a methallyl magnesium chloride, proved to be an excellent substrate for ruthenium-catalyzed asymmetric hydrogenation with atropisomeric diphosphine ligands. Hydrogenation with a ruthenium/(R)- MeOBiPheP catalyst at S/C = 500, gave the chiral amide (R)-9 in 98.5% ee in almost quantitative yield. After acidic amide hydrolysis the desired amine (R)-3 was obtained without erosion of enantioselectivity. It is anticipated that the overall process will be amenable to large-scale production

    Bringing CASE in from the cold: the teaching and learning of thinking

    Get PDF
    Thinking Science is a two-year program of professional development for teachers and thinking lessons for students in junior high school science classes. This paper presents research on the effects of Thinking Science on students’ levels of cognition in Australia. The research is timely with a general capability focused on critical thinking in the newly implemented F-10 curriculum in Australia. The design of the research was a quasi-experiment with pre and post-intervention cognitive tests conducted with participating students (n = 655) from nine cohorts in seven high schools. Findings showed significant cognitive gains compared with an age matched control group over the length of the program. Noteworthy, is a correlation between baseline cognitive score and school Index of Community Socio-Educational Advantage (ICSEA). We argue that the teaching of thinking be brought into the mainstream arena of educational discourse and the principles from evidence-based programs such as Thinking Science be universally adopted

    Towards an understanding of neuroscience for science educators

    Get PDF
    Advances in neuroscience have brought new insights to the development of cognitive functions. These data are of considerable interest to educators concerned with how students learn. This review documents some of the recent findings in neuroscience, which is richer in describing cognitive functions than affective aspects of learning. A brief overview is presented here of the techniques used to generate data from imaging and how these findings have the possibility to inform educators. There are implications for considering the impact of neuroscience at all levels of education – from the classroom teacher and practitioner to policy. This relatively new cross-disciplinary area of research implies a need for educators and scientists to engage with each other. What questions are emerging through such dialogues between educators and scientists are likely to shed light on, for example, reward, motivation, working memory, learning difficulties, bilingualism and child development. The sciences of learning are entering a new paradigm

    Time scales of auditory habituation in the amygdala and cerebral cortex

    Get PDF
    Habituation is a fundamental form of learning manifested by a decrement of neuronal responses to repeated sensory stimulation. In addition, habituation is also known to occur on the behavioral level, manifested by reduced emotional reactions to repeatedly presented affective stimuli. It is, however, not clear which brain areas show a decline in activity during repeated sensory stimulation on the same time scale as reduced valence and arousal experience and whether these areas can be delineated from other brain areas with habituation effects on faster or slower time scales. These questions were addressed using functional magnetic resonance imaging acquired during repeated stimulation with piano melodies. The magnitude of functional responses in the laterobasal amygdala and in related cortical areas and that of valence and arousal ratings, given after each music presentation, declined in parallel over the experiment. In contrast to this long-term habituation (43 min), short-term decreases occurring within seconds were found in the primary auditory cortex. Sustained responses that remained throughout the whole investigated time period were detected in the ventrolateral prefrontal cortex extending to the dorsal part of the anterior insular cortex. These findings identify an amygdalocortical network that forms the potential basis of affective habituation in humans
    corecore