59 research outputs found

    An 83 000-year-old ice core from Roosevelt Island, Ross Sea, Antarctica

    Get PDF
    In 2013 an ice core was recovered from Roosevelt Island, an ice dome between two submarine troughs carved by paleo-ice-streams in the Ross Sea, Antarctica. The ice core is part of the Roosevelt Island Climate Evolution (RICE) project and provides new information about the past configuration of the West Antarctic Ice Sheet (WAIS) and its retreat during the last deglaciation. In this work we present the RICE17 chronology, which establishes the depth–age relationship for the top 754 m of the 763 m core. RICE17 is a composite chronology combining annual layer interpretations for 0–343 m (Winstrup et al., 2019) with new estimates for gas and ice ages based on synchronization of CH4 and δ18Oatm records to corresponding records from the WAIS Divide ice core and by modeling of the gas age–ice age difference. Novel aspects of this work include the following: (1) an automated algorithm for multiproxy stratigraphic synchronization of high-resolution gas records; (2) synchronization using centennial-scale variations in methane for pre-anthropogenic time periods (60–720 m, 1971 CE to 30 ka), a strategy applicable for future ice cores; and (3) the observation of a continuous climate record back to ∼65 ka providing evidence that the Roosevelt Island Ice Dome was a constant feature throughout the last glacial period

    Microstructural analysis of the NEEM ice core, Greenland by using electron backscatter diffraction (EBSD)

    Get PDF
    Mass loss of the Greenland ice sheet is accelerating, which is attributed to increased ice stream discharge and changes in surface mass balance including increased runoff. Ice stream discharge is caused by both ice deformation and basal sliding. For better projection of future mass loss, it is important to understand deformation mechanisms of polycrystalline ice in ice sheet. Deformation properties of polycrystalline material are related to its microstructure (e.g. crystal grain orientation and size). As recrystallization and recovery are occurring together in ice sheet, analysis of microstructure of ice is essential. Electron backscatter diffraction (EBSD) is a method for measuring crystal lattice orientation with high angular and spatial resolutions. Both c- and a-axes of ice can be measured. We analyzed Greenland NEEM ice core and the preliminary result shows that most subgrain boundaries (SGBs) observed by optical microscopy have lattice misorientations < 4°. This result is in accordance with analyses of Antarctic EDML ice core by X-ray diffractometry while it differs from threshold angle of SGB/GB estimated with a dislocation theory. The observation results from ice sheet ice could contribute to better estimations of strain rate by models based on microstructural processes

    Microstructural analysis of the NEEM ice core, Greenland by using electron backscatter diffraction (EBSD)

    Get PDF
    第8回極域科学シンポジウム/特別セッション:[S] 先端的技術で切り開く極域科学 -極域観測における計測、分析、解析の最前線-12月8日(金)国立極地研究所 1階交流アトリウムThe Eighth Symposium on Polar Science/Special session: [S] Polar science developed by leading-edge technology - on the frontiers of measurement and analysis in polar science -Fri. 8 Dec./Entrance Hall (1st floor), National Institute of Polar Researc

    Materials for hydrogen-based energy storage - past, recent progress and future outlook

    Get PDF
    Globally, the accelerating use of renewable energy sources, enabled by increased efficiencies and reduced costs, and driven by the need to mitigate the effects of climate change, has significantly increased research in the areas of renewable energy production, storage, distribution and end-use. Central to this discussion is the use of hydrogen, as a clean, efficient energy vector for energy storage. This review, by experts of Task 32, “Hydrogen-based Energy Storage” of the International Energy Agency, Hydrogen TCP, reports on the development over the last 6 years of hydrogen storage materials, methods and techniques, including electrochemical and thermal storage systems. An overview is given on the background to the various methods, the current state of development and the future prospects. The following areas are covered; porous materials, liquid hydrogen carriers, complex hydrides, intermetallic hydrides, electrochemical storage of energy, thermal energy storage, hydrogen energy systems and an outlook is presented for future prospects and research on hydrogen-based energy storage

    Psychometric Properties and Correlates of Precarious Manhood Beliefs in 62 Nations

    Get PDF
    Precarious manhood beliefs portray manhood, relative to womanhood, as a social status that is hard to earn, easy to lose, and proven via public action. Here, we present cross-cultural data on a brief measure of precarious manhood beliefs (the Precarious Manhood Beliefs scale [PMB]) that covaries meaningfully with other cross-culturally validated gender ideologies and with country-level indices of gender equality and human development. Using data from university samples in 62 countries across 13 world regions (N = 33,417), we demonstrate: (1) the psychometric isomorphism of the PMB (i.e., its comparability in meaning and statistical properties across the individual and country levels); (2) the PMB’s distinctness from, and associations with, ambivalent sexism and ambivalence toward men; and (3) associations of the PMB with nation-level gender equality and human development. Findings are discussed in terms of their statistical and theoretical implications for understanding widely-held beliefs about the precariousness of the male gender role

    Common Breast Cancer Susceptibility Alleles and the Risk of Breast Cancer for BRCA1 and BRCA2 Mutation Carriers: Implications for Risk Prediction

    Get PDF
    The known breast cancer (BC) susceptibility polymorphisms in FGFR2, TNRC9/TOX3, MAP3K1,LSP1 and 2q35 confer increased risks of BC for BRCA1 or BRCA2 mutation carriers. We evaluated the associations of three additional SNPs, rs4973768 in SLC4A7/NEK10, rs6504950 in STXBP4/COX11 and rs10941679 at 5p12 and reanalyzed the previous associations using additional carriers in a sample of 12,525 BRCA1 and 7,409 BRCA2 carriers. Additionally, we investigated potential interactions between SNPs and assessed the implications for risk prediction. The minor alleles of rs4973768 and rs10941679 were associated with increased BC risk for BRCA2 carriers (per-allele Hazard Ratio (HR)=1.10, 95%CI:1.03-1.18, p=0.006 and HR=1.09, 95%CI:1.01-1.19, p=0.03, respectively). Neither SNP was associated with BC risk for BRCA1 carriers and rs6504950 was not associated with BC for either BRCA1 or BRCA2 carriers. Of the nine polymorphisms investigated, seven were associated with BC for BRCA2 carriers (FGFR2, TOX3, MAP3K1, LSP1, 2q35, SLC4A7, 5p12, p-values:7×10−11-0.03), but only TOX3 and 2q35 were associated with the risk for BRCA1 carriers (p=0.0049, 0.03 respectively). All risk associated polymorphisms appear to interact multiplicatively on BC risk for mutation carriers. Based on the joint genotype distribution of the seven risk associated SNPs in BRCA2 mutation carriers, the 5% of BRCA2 carriers at highest risk (i.e. between 95th and 100th percentiles) were predicted to have a probability between 80% and 96% of developing BC by age 80, compared with 42-50% for the 5% of carriers at lowest risk. Our findings indicated that these risk differences may be sufficient to influence the clinical management of mutation carriers
    corecore