244 research outputs found

    Pressure-tuning of the c-f hybridization in Yb metal detected by infrared spectroscopy up to 18 GPa

    Full text link
    It has been known that the elemental Yb, a divalent metal at mbient pressure, becomes a mixed-valent metal under external pressure, with its valence reaching ~2.6 at 30 GPa. In this work, infrared spectroscopy has been used to probe the evolution of microscopic electronic states associated with the valence crossover in Yb at external pressures up to 18 GPa. The measured infrared reflectivity spectrum R(w) of Yb has shown large variations with pressure. In particular, R(w) develops a deep minimum in the mid-infrared, which shifts to lower energy with increasing pressure. The dip is attributed to optical absorption due to a conduction c-f electron hybridization state, similarly to those previously observed for heavy fermion compounds. The red shift of the dip indicates that the cc-ff hybridization decreases with pressure, which is consistent with the increase of valence.Comment: 2 pages, to appear in J. Phys. Soc. Jpn. Supp

    Searching for the Slater Transition in the Pyrochlore Cd2_{2}Os2_{2}O7_{7} with Infrared Spectroscopy

    Full text link
    Infrared reflectance measurements were made on the single crystal pyrochlore Cd2_{2}Os2_{2}O7_{7} in order to examine the transformations of the electronic structure and crystal lattice across the boundary of the metal insulator transition at TMIT=226KT_{MIT}=226K. All predicted IR active phonons are observed in the conductivity over all temperatures and the oscillator strength is found to be temperature independent. These results indicate that charge ordering plays only a minor role in the MIT and that the transition is strictly electronic in nature. The conductivity shows the clear opening of a gap with 2Δ=5.2kBTMIT2\Delta=5.2k_{B}T_{MIT}. The gap opens continuously, with a temperature dependence similar to that of BCS superconductors, and the gap edge having a distinct σ(ω)ω1/2\sigma(\omega)\thicksim\omega^{1/2} dependence. All of these observables support the suggestion of a Slater transition in Cd2_{2}% Os2_{2}O7_{7}.Comment: 4 pages, 4 figure

    Optical investigation of the charge-density-wave phase transitions in NbSe3NbSe_{3}

    Full text link
    We have measured the optical reflectivity R(ω)R(\omega) of the quasi one-dimensional conductor NbSe3NbSe_{3} from the far infrared up to the ultraviolet between 10 and 300 KK using light polarized along and normal to the chain axis. We find a depletion of the optical conductivity with decreasing temperature for both polarizations in the mid to far-infrared region. This leads to a redistribution of spectral weight from low to high energies due to partial gapping of the Fermi surface below the charge-density-wave transitions at 145 K and 59 K. We deduce the bulk magnitudes of the CDW gaps and discuss the scattering of ungapped free charge carriers and the role of fluctuations effects

    Sum rules and energy scales in the high-temperature superconductor YBa2Cu3O6+x

    Full text link
    The Ferrell-Glover-Tinkham (FGT) sum rule has been applied to the temperature dependence of the in-plane optical conductivity of optimally-doped YBa_2Cu_3O_{6.95} and underdoped YBa_2Cu_3O_{6.60}. Within the accuracy of the experiment, the sum rule is obeyed in both materials. However, the energy scale \omega_c required to recover the full strength of the superfluid \rho_s in the two materials is dramatically different; \omega_c \simeq 800 cm^{-1} in the optimally doped system (close to twice the maximum of the superconducting gap, 2\Delta_0), but \omega_c \gtrsim 5000 cm^{-1} in the underdoped system. In both materials, the normal-state scattering rate close to the critical temperature is small, \Gamma < 2\Delta_0, so that the materials are not in the dirty limit and the relevant energy scale for \rho_s in a BCS material should be twice the energy gap. The FGT sum rule in the optimally-doped material suggests that the majority of the spectral weight of the condensate comes from energies below 2\Delta_0, which is consistent with a BCS material in which the condensate originates from a Fermi liquid normal state. In the underdoped material the larger energy scale may be a result of the non-Fermi liquid nature of the normal state. The dramatically different energy scales suggest that the nature of the normal state creates specific conditions for observing the different aspects of what is presumably a central mechanism for superconductivity in these materials.Comment: RevTeX 4 file, 9 pages with 7 embedded eps figure

    c-Axis Transport and Resistivity Anisotropy of Lightly- to Moderately-Doped La_{2-x}Sr_{x}CuO_{4} Single Crystals: Implications on the Charge Transport Mechanism

    Full text link
    Both the in-plane and the out-of-plane resistivities (\rho_{ab} and \rho_{c}) are measured in high-quality La_{2-x}Sr_{x}CuO_{4} (LSCO) single crystals in the lightly- to moderately-doped region, x = 0.01 to 0.10, and the resistivity anisotropy is determined. In all the samples studied, the anisotropy ratio \rho _{c}/\rho_{ab} quickly increases with decreasing temperature, although in non-superconducting samples the strong localization effect causes \rho _{c}/\rho_{ab} to decrease at low temperatures. Most notably, it is found that \rho_{c}/\rho_{ab} at moderate temperatures (100 - 300 K) is almost completely independent of doping in the non-superconducting regime (x = 0.01 to 0.05); this indicates that the same charge confinement mechanism that renormalizes the c-axis hopping rate is at work down to x = 0.01. It is discussed that this striking x-independence of \rho_{c}/\rho_{ab} is consistent with the idea that holes form a self-organized network of hole-rich regions, which also explains the unusually metallic in-plane transport of the holes in the lightly-doped region. Furthermore, the data for x > 0.05 suggest that the emergence of the superconductivity is related to an increase in the c-axis coupling.Comment: 7 pages, 5 figures, submitted to Phys. Rev.

    Correlation gap in the heavy-fermion antiferromagnet UPd_2Al_3

    Full text link
    The optical properties of the heavy-fermion compound UPd2_2Al3_3 have been measured in the frequency range from 0.04 meV to 5 meV (0.3 to 40 cm1^{-1}) at temperatures 2K<T<3002 {\rm K}<T< 300 K. Below the coherence temperature T50T^*\approx 50 K, the hybridization gap opens around 10 meV. As the temperature decreases further (T20T\leq 20 K), a well pronounced pseudogap of approximately 0.2 meV develops in the optical response; we relate this to the antiferromagnetic ordering which occurs below TN14T_N\approx 14 K. The frequency dependent mass and scattering rate give evidence that the enhancement of the effective mass mainly occurs below the energy which is associated to the magnetic correlations between the itinerant and localized 5f electrons. In addition to this correlation gap, we observe a narrow zero-frequency conductivity peak which at 2 K is less than 0.1 meV wide, and which contains only a fraction of the delocalized carriers. The analysis of the spectral weight infers a loss of kinetic energy associated with the superconducting transition.Comment: RevTex, 15 pages, 7 figure

    Doping dependence of the gap anisotropy in LCCO studied by millimeter-wave spectroscopy

    Full text link
    We measure the penetration depth of optimally doped and underdoped La2-xCexCuO4 in the millimeter frequency domain (4 - 7 cm-1) and for temperatures 2 K < T < 300 K. The penetration depth as function of temperature reveals significant changes on electron doping. It shows quadratic temperature dependence in underdoped samples, but increases almost exponentially at optimal doping. Significant changes in the gap anisotropy (or even in the gap symmetry) may account for this transition.Comment: 4 pages, 4 figure

    Optical symmetries and anisotropic transport in high-Tc superconductors

    Full text link
    A simple symmetry analysis of in-plane and out-of-plane transport in a family of high temperature superconductors is presented. It is shown that generalized scaling relations exist between the low frequency electronic Raman response and the low frequency in-plane and out-of-plane conductivities in both the normal and superconducting states of the cuprates. Specifically, for both the normal and superconducting state, the temperature dependence of the low frequency B1gB_{1g} Raman slope scales with the cc-axis conductivity, while the B2gB_{2g} Raman slope scales with the in-plane conductivity. Comparison with experiments in the normal state of Bi-2212 and Y-123 imply that the nodal transport is largely doping independent and metallic, while transport near the BZ axes is governed by a quantum critical point near doping p0.22p\sim 0.22 holes per CuO2_{2} plaquette. Important differences for La-214 are discussed. It is also shown that the cc- axis conductivity rise for TTcT\ll T_{c} is a consequence of partial conservation of in-plane momentum for out-of-plane transport.Comment: 16 pages, 8 Figures (3 pages added, new discussion on pseudogap and charge ordering in La214

    Search for leptophobic Z ' bosons decaying into four-lepton final states in proton-proton collisions at root s=8 TeV

    Get PDF
    Peer reviewe

    Measurements of differential production cross sections for a Z boson in association with jets in pp collisions at root s=8 TeV

    Get PDF
    Peer reviewe
    corecore