122 research outputs found

    Exposed-key weakness of αη\alpha \eta

    Full text link
    The αη\alpha \eta protocol given by Barbosa \emph{et al.}, PRL 90, 227901 (2003) claims to be a secure way of encrypting messages using mesoscopic coherent states. We show that transmission under αη\alpha \eta exposes information about the secret key to an eavesdropper, and we estimate the rate at which an eavesdropper can learn about the key. We also consider the consequences of using further randomization to protect the key and how our analysis applies to this case. We conclude that αη\alpha \eta is not informationally secure.Comment: 6 pg. Was originally written in May 2006 and has languished in getting-approved-land for 7 months, but we've tried to keep current with papers published since then. This version changed for publicatio

    Potential role of the intestinal microbiota of the mother in neonatal immune education

    Get PDF
    Mucosal dendritic cells are at the heart of decision-making processes that dictate immune reactivity to intestinal microbes. They ensure tolerance to commensal bacteria and a vigorous immune response to pathogens. It has recently been demonstrated that the former involves a limited migration of bacterially loaded dendritic cells from the Peyer's patches to the mesenteric lymph nodes. During lactation, cells from gut-associated lymphoid tissue travel to the breast via the lymphatics and peripheral blood. Here, we show that human peripheral blood mononuclear cells and breast milk cells contain bacteria and their genetic material during lactation. Furthermore, we show an increased bacterial translocation from the mouse gut during pregnancy and lactation and the presence of bacterially loaded dendritic cells in lactating breast tissue. Our observations show bacterial translocation as a unique physiological event, which is increased during pregnancy and lactation. They suggest endogenous transport of intestinally derived bacterial components within dendritic cells destined for the lactating mammary gland. They also suggest neonatal immune imprinting by milk cells containing commensal-associated molecular pattern

    Potential role of the intestinal microbiota of the mother in neonatal immune education

    Get PDF
    Mucosal dendritic cells are at the heart of decision-making processes that dictate immune reactivity to intestinal microbes. They ensure tolerance to commensal bacteria and a vigorous immune response to pathogens. It has recently been demonstrated that the former involves a limited migration of bacterially loaded dendritic cells from the Peyer's patches to the mesenteric lymph nodes. During lactation, cells from gut-associated lymphoid tissue travel to the breast via the lymphatics and peripheral blood. Here, we show that human peripheral blood mononuclear cells and breast milk cells contain bacteria and their genetic material during lactation. Furthermore, we show an increased bacterial translocation from the mouse gut during pregnancy and lactation and the presence of bacterially loaded dendritic cells in lactating breast tissue. Our observations show bacterial translocation as a unique physiological event, which is increased during pregnancy and lactation. They suggest endogenous transport of intestinally derived bacterial components within dendritic cells destined for the lactating mammary gland. They also suggest neonatal immune imprinting by milk cells containing commensal-associated molecular patterns.Facultad de Ciencias Exacta

    Potential role of the intestinal microbiota of the mother in neonatal immune education

    Get PDF
    Mucosal dendritic cells are at the heart of decision-making processes that dictate immune reactivity to intestinal microbes. They ensure tolerance to commensal bacteria and a vigorous immune response to pathogens. It has recently been demonstrated that the former involves a limited migration of bacterially loaded dendritic cells from the Peyer's patches to the mesenteric lymph nodes. During lactation, cells from gut-associated lymphoid tissue travel to the breast via the lymphatics and peripheral blood. Here, we show that human peripheral blood mononuclear cells and breast milk cells contain bacteria and their genetic material during lactation. Furthermore, we show an increased bacterial translocation from the mouse gut during pregnancy and lactation and the presence of bacterially loaded dendritic cells in lactating breast tissue. Our observations show bacterial translocation as a unique physiological event, which is increased during pregnancy and lactation. They suggest endogenous transport of intestinally derived bacterial components within dendritic cells destined for the lactating mammary gland. They also suggest neonatal immune imprinting by milk cells containing commensal-associated molecular patterns.Facultad de Ciencias Exacta

    SIgA, TGF-beta 1, IL-10, and TNF alpha in Colostrum Are Associated with Infant Group B Streptococcus Colonization

    Get PDF
    Background: Group B Streptococcus (GBS) is a major cause of mortality and morbidity in infants and is associated with transmission from a colonized mother at birth and via infected breastmilk. Although maternal/infant colonization with GBS is common, the majority of infants exposed to GBS remain unaffected. The association between breastmilk immune factors and infant colonization and disease prevention has not been elucidated. Objectives: We have investigated the association between SIgA and cytokines in breastmilk and infant GBS colonization and clearance. Methods: Mother/infant GBS colonization was determined in a prospective cohort of 750 Gambian mother/infant pairs followed to day 89 of life. Anti-GBS secretory IgA bound to the surface of whole bacteria was assessed by flow cytometry and a panel of 12 cytokines quantified by mesoscale discovery in colostrum, breastmilk and serum. Results: Compared with infants receiving low anti-GBS SIgA in colostrum, infants receiving high anti-GBS SIgA were at decreased risk of GBS colonization for serotypes III and V. Infants colonized at day 6 were twice as likely to receive colostrum with high TGF-β1, TNFα, IL10, and IL-6 compared to uncolonized infants. Infants receiving high colostral TGF-β1, TNFα, and IL-6 had two-fold enhanced GBS clearance between birth and day 89. Conclusion: Our results suggest that the infant GBS colonization risk diminishes with increasing anti-GBS SIgA antibody in breastmilk and that key maternally derived cytokines might contribute to protection against infant colonization. These findings might be leveraged to develop interventions including maternal vaccination that may reduce infant GBS colonization

    Potential role of the intestinal microbiota of the mother in neonatal immune education

    Get PDF
    Mucosal dendritic cells are at the heart of decision-making processes that dictate immune reactivity to intestinal microbes. They ensure tolerance to commensal bacteria and a vigorous immune response to pathogens. It has recently been demonstrated that the former involves a limited migration of bacterially loaded dendritic cells from the Peyer's patches to the mesenteric lymph nodes. During lactation, cells from gut-associated lymphoid tissue travel to the breast via the lymphatics and peripheral blood. Here, we show that human peripheral blood mononuclear cells and breast milk cells contain bacteria and their genetic material during lactation. Furthermore, we show an increased bacterial translocation from the mouse gut during pregnancy and lactation and the presence of bacterially loaded dendritic cells in lactating breast tissue. Our observations show bacterial translocation as a unique physiological event, which is increased during pregnancy and lactation. They suggest endogenous transport of intestinally derived bacterial components within dendritic cells destined for the lactating mammary gland. They also suggest neonatal immune imprinting by milk cells containing commensal-associated molecular patterns.Facultad de Ciencias Exacta

    Breast Milk Cytokines and Early Growth in Gambian Infants

    Get PDF
    Background: Breast milk provides nutrition for infants but also delivers other bioactive factors that have key protective and developmental benefits. In particular, cytokines are thought to play a role in immunomodulation, although little is known about their impact on health outcomes in early life. Objective: The purpose of this pilot study was to evaluate the relationship between cytokines in breast milk and infant growth outcomes in a low-income setting. Methods: 100 mother-infant pairs were followed up to 2–3 months postpartum as part of a prospective longitudinal cohort study in urban Gambia, West Africa. The concentrations of 9 pro-inflammatory cytokines (IL-1β, IL-2, IL-4, IL-6, IL-10, IL-12, IL-13, IFN-γ, TNFα), IGF-1 and TGFβ2 were measured in colostrum within 12 h of birth and in breast milk at the final visit, scheduled between day 60 and 89 postpartum. Infant weight was recorded and converted to weight-for-age Z-scores (WAZ) at the same time points. Growth outcomes were defined in our study as (a) change in WAZ between birth and final visit (b) WAZ at final visit. Linear regression analysis was used to determine the ability of colostrum and breast milk cytokine concentrations to predict growth outcomes up to 2–3 months postpartum. Results: Gambian infants demonstrated growth faltering across the first 2–3 months postpartum. There was no significant relationship between cytokines in colostrum and subsequent change in WAZ between birth and the final visit, in either unadjusted or adjusted models. However, cytokines in mature breast milk, TNFα, IFNγ, IL1β, IL2, IL4, and IL6, were weak negative predictors of WAZ scores at the final visit, in unadjusted models (p < 0.05). When adjusted for maternal anemia (as a proxy for maternal nutrition), TNFα and IL6 remained significant predictors (p < 0.05). Conclusions: Variations in breast milk cytokine levels do not play a substantial role in the growth faltering observed across early infancy. The potential contribution of other factors, such as micronutrients, hormones or human milk oligosaccharides, must be elucidated. Cytokine levels in mature breast milk were weakly predictive of poor infant growth, possibly reflecting a “read-out” of suboptimal maternal health and nutrition

    Protective Microbiota: From Localized to Long-Reaching Co-Immunity

    Get PDF
    Resident microbiota do not just shape host immunity, they can also contribute to host protection against pathogens and infectious diseases. Previous reviews of the protective roles of the microbiota have focused exclusively on colonization resistance localized within a microenvironment. This review shows that the protection against pathogens also involves the mitigation of pathogenic impact without eliminating the pathogens (i.e., “disease tolerance”) and the containment of microorganisms to prevent pathogenic spread. Protective microorganisms can have an impact beyond their niche, interfering with the entry, establishment, growth, and spread of pathogenic microorganisms. More fundamentally, we propose a series of conceptual clarifications in support of the idea of a “co-immunity,” where an organism is protected by both its own immune system and components of its microbiota
    • …
    corecore