57 research outputs found

    Myasthenia gravis and pregnancy: clinical implications and neonatal outcome

    Get PDF
    BACKGROUND: The myasthenia gravis is twice as common in women as in men and frequently affects young women in the second and third decades of life, overlapping with the childbearing years. Generally, during pregnancy in one third of patients the disease exacerbates, whereas in two thirds it remains clinically unchanged. Complete remission can occur in some patients. METHODS: To describe the clinical course, delivery and neonatal outcome of 18 pregnant women with the diagnosis of myasthenia gravis. Retrospective chart review of pregnant patients with myasthenia gravis, followed at the National Institute of Perinatology in Mexico City over an 8-year period. Data was abstracted from the medical records on the clinical course during pregnancy, delivery and neonatal outcome. RESULTS: From January 1, 1996 to December 31, 2003 18 patients with myasthenia gravis were identified and included in the study. The mean ± SD maternal age was 27.4 ± 4.0 years. During pregnancy 2 women (11%) had an improvement in the clinical symptoms of myasthenia gravis, 7 women (39%) had clinical worsening of the condition of 9 other patients (50%) remained clinically unchanged. Nine patients delivered vaginally, 8 delivered by cesarean section and 1 pregnancy ended in fetal loss. Seventeen infants were born at mean ± SD gestational age of 37.5 ± 3.0 weeks and a mean birth weight of 2710 ± 73 g. Only one infant presented with transient neonatal myasthenia gravis. No congenital anomalies were identified in any of the newborns. CONCLUSIONS: The clinical course of myasthenia gravis during pregnancy is variable, with a significant proportion of patients experiencing worsening of the clinical symptoms. However, neonatal transient myasthenia was uncommon in our patient population

    Pseudoacromegaly

    Get PDF
    © 2018 Elsevier Inc. Individuals with acromegaloid physical appearance or tall stature may be referred to endocrinologists to exclude growth hormone (GH) excess. While some of these subjects could be healthy individuals with normal variants of growth or physical traits, others will have acromegaly or pituitary gigantism, which are, in general, straightforward diagnoses upon assessment of the GH/IGF-1 axis. However, some patients with physical features resembling acromegaly – usually affecting the face and extremities –, or gigantism – accelerated growth/tall stature – will have no abnormalities in the GH axis. This scenario is termed pseudoacromegaly, and its correct diagnosis can be challenging due to the rarity and variability of these conditions, as well as due to significant overlap in their characteristics. In this review we aim to provide a comprehensive overview of pseudoacromegaly conditions, highlighting their similarities and differences with acromegaly and pituitary gigantism, to aid physicians with the diagnosis of patients with pseudoacromegaly.PM is supported by a clinical fellowship by Barts and the London Charity. Our studies on pituitary adenomas and related conditions received support from the Medical Research Council, Rosetrees Trust and the Wellcome Trust

    Type 1 Diabetes Mellitus and the First Trimester Placenta: Hyperglycemia-Induced Effects on Trophoblast Proliferation, Cell Cycle Regulators, and Invasion

    No full text
    Type 1 diabetes mellitus (T1DM) is associated with reduced fetal growth in early pregnancy, but a contributing role of the placenta has remained elusive. Thus, we investigated whether T1DM alters placental development in the first trimester. Using a protein array, the level of 60 cell-cycle-related proteins was determined in human first trimester placental tissue (gestational week 5–11) from control (n = 11) and T1DM pregnancies (n = 12). Primary trophoblasts (gestational week 7–12, n = 32) were incubated in the absence (control) or presence of hyperglycemia (25 mM D-glucose) and hyperosmolarity (5.5 mM D-glucose + 19.5 mM D-mannitol). We quantified the number of viable and dead trophoblasts (CASY Counter) and assessed cell cycle distribution (FACS) and trophoblast invasion using a transwell assay. T1DM was associated with a significant (p < 0.05) downregulation of Ki67 (−26%), chk1 (−25%), and p73 (−26%). The number of viable trophoblasts was reduced under hyperglycemia (−23%) and hyperosmolarity (−18%), whereas trophoblast invasion was increased only under hyperglycemia (+6%). Trophoblast cell death and cell cycle distribution remained unaffected. Collectively, our data demonstrate that hyperglycemia decreases trophoblast proliferation as a potential contributing factor to the reduced placental growth in T1DM in vivo
    corecore