54 research outputs found

    Online Data Reduction for the Belle II Experiment using DATCON

    Full text link
    The new Belle II experiment at the asymmetric e+ee^+ e^- accelerator SuperKEKB at KEK in Japan is designed to deliver a peak luminosity of 8×1035cm2s18\times10^{35}\text{cm}^{-2}\text{s}^{-1}. To perform high-precision track reconstruction, e.g. for measurements of time-dependent CP-violating decays and secondary vertices, the Belle II detector is equipped with a highly segmented pixel detector (PXD). The high instantaneous luminosity and short bunch crossing times result in a large stream of data in the PXD, which needs to be significantly reduced for offline storage. The data reduction is performed using an FPGA-based Data Acquisition Tracking and Concentrator Online Node (DATCON), which uses information from the Belle II silicon strip vertex detector (SVD) surrounding the PXD to carry out online track reconstruction, extrapolation to the PXD, and Region of Interest (ROI) determination on the PXD. The data stream is reduced by a factor of ten with an ROI finding efficiency of >90% for PXD hits inside the ROI down to 50 MeV in pTp_\text{T} of the stable particles. We will present the current status of the implementation of the track reconstruction using Hough transformations, and the results obtained for simulated \Upsilon(4S) BBˉ\rightarrow \, B\bar{B} events

    Charge collection and efficiency measurements of the TJ-Monopix2 DMAPS in 180\,nm CMOS technology

    Full text link
    Monolithic CMOS pixel detectors have emerged as competitive contenders in the field of high-energy particle physics detectors. By utilizing commercial processes they offer high-volume production of such detectors. A series of prototypes has been designed in a 180\,nm Tower process with depletion of the sensor material and a column-drain readout architecture. The latest iteration, TJ-Monopix2, features a large 2\,cm x 2\,cm matrix consisting of 512 x 512 pixels with 33.04\,um pitch. A small collection electrode design aims at low power consumption and low noise while the radiation tolerance for high-energy particle detector applications needs extra attention. With a goal to reach radiation tolerance to levels of 1015110^{15}\,1\,MeV neq_\text{eq}\,cm2^{-2} of NIEL damage a modification of the standard process has been implemented by adding a low-dosed n-type silicon implant across the pixel in order to allow for homogeneous depletion of the sensor volume. Recent lab measurements and beam tests were conducted for unirradiated modules to study electrical characteristics and hit detection efficiency.Comment: Conference proceedings for PIXEL2022 conference, submitted to Po

    Characterization of passive CMOS sensors with RD53A pixel modules

    Full text link
    Both the current upgrades to accelerator-based HEP detectors (e.g. ATLAS, CMS) and also future projects (e.g. CEPC, FCC) feature large-area silicon-based tracking detectors. We are investigating the feasibility of using CMOS foundries to fabricate silicon radiation detectors, both for pixels and for large-area strip sensors. A successful proof of concept would open the market potential of CMOS foundries to the HEP community, which would be most beneficial in terms of availability, throughput and cost. In addition, the availability of multi-layer routing of signals will provide the freedom to optimize the sensor geometry and the performance, with biasing structures implemented in poly-silicon layers and MIM-capacitors allowing for AC coupling. A prototyping production of strip test structures and RD53A compatible pixel sensors was recently completed at LFoundry in a 150nm CMOS process. This presentation will focus on the characterization of pixel modules, studying the performance in terms of charge collection, position resolution and hit efficiency with measurements performed in the laboratory and with beam tests. We will report on the investigation of RD53A modules with 25x100 μm2^{2} cell geometry

    Characterization of passive CMOS sensors with RD53A pixel modules

    Full text link
    Both the current upgrades to accelerator-based HEP detectors (e.g. ATLAS, CMS) and also future projects (e.g. CEPC, FCC) feature large-area silicon-based tracking detectors. We are investigating the feasibility of using CMOS foundries to fabricate silicon radiation detectors, both for pixels and for large-area strip sensors. A successful proof of concept would open the market potential of CMOS foundries to the HEP community, which would be most beneficial in terms of availability, throughput and cost. In addition, the availability of multi-layer routing of signals will provide the freedom to optimize the sensor geometry and the performance, with biasing structures implemented in poly-silicon layers and MIM-capacitors allowing for AC coupling. A prototyping production of strip test structures and RD53A compatible pixel sensors was recently completed at LFoundry in a 150nm CMOS process. This presentation will focus on the characterization of pixel modules, studying the performance in terms of charge collection, position resolution and hit efficiency with measurements performed in the laboratory and with beam tests. We will report on the investigation of RD53A modules with 25x100 μm2^{2} cell geometry

    Belle II Pixel Detector Commissioning and Operational Experience

    Get PDF

    Status of the BELLE II Pixel Detector

    Get PDF
    The Belle II experiment at the super KEK B-factory (SuperKEKB) in Tsukuba, Japan, has been collecting e+ee^+e^− collision data since March 2019. Operating at a record-breaking luminosity of up to 4.7×1034cm2s14.7×10^{34} cm^{−2}s^{−1}, data corresponding to 424fb1424 fb^{−1} has since been recorded. The Belle II VerteX Detector (VXD) is central to the Belle II detector and its physics program and plays a crucial role in reconstructing precise primary and decay vertices. It consists of the outer 4-layer Silicon Vertex Detector (SVD) using double sided silicon strips and the inner two-layer PiXel Detector (PXD) based on the Depleted P-channel Field Effect Transistor (DePFET) technology. The PXD DePFET structure combines signal generation and amplification within pixels with a minimum pitch of (50×55)μm2(50×55) μm^2. A high gain and a high signal-to-noise ratio allow thinning the pixels to 75μm75 μm while retaining a high pixel hit efficiency of about 9999%. As a consequence, also the material budget of the full detector is kept low at 0.21≈0.21%XX0\frac{X}{X_0} per layer in the acceptance region. This also includes contributions from the control, Analog-to-Digital Converter (ADC), and data processing Application Specific Integrated Circuits (ASICs) as well as from cooling and support structures. This article will present the experience gained from four years of operating PXD; the first full scale detector employing the DePFET technology in High Energy Physics. Overall, the PXD has met the expectations. Operating in the intense SuperKEKB environment poses many challenges that will also be discussed. The current PXD system remains incomplete with only 20 out of 40 modules having been installed. A full replacement has been constructed and is currently in its final testing stage before it will be installed into Belle II during the ongoing long shutdown that will last throughout 2023

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Measurement of jet fragmentation in Pb+Pb and pppp collisions at sNN=2.76\sqrt{{s_\mathrm{NN}}} = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF

    Measurement of the W boson polarisation in ttˉt\bar{t} events from pp collisions at s\sqrt{s} = 8 TeV in the lepton + jets channel with ATLAS

    Get PDF
    corecore