863 research outputs found
Maternal short stature does not predict their children's fatness indicators in a nutritional dual-burden sample of urban Mexican Maya.
The co-existence of very short stature due to poor chronic environment in early life and obesity is becoming a public health concern in rapidly transitioning populations with high levels of poverty. Individuals who have very short stature seem to be at an increased risk of obesity in times of relative caloric abundance. Increasing evidence shows that an individual is influenced by exposures in previous generations. This study assesses whether maternal poor early life environment predicts her child's adiposity using cross sectional design on Maya schoolchildren aged 7-9 and their mothers (n = 57 pairs). We compared maternal chronic early life environment (stature) with her child's adiposity (body mass index [BMI] z-score, waist circumference z-score, and percentage body fat) using multiple linear regression, controlling for the child's own environmental exposures (household sanitation and maternal parity). The research was performed in the south of Merida, Yucatan, Mexico, a low socioeconomic urban area in an upper middle income country. The Maya mothers were very short, with a mean stature of 147 cm. The children had fairly high adiposity levels, with BMI and waist circumference z-scores above the reference median. Maternal stature did not significantly predict any child adiposity indicator. There does not appear to be an intergenerational component of maternal early life chronic under-nutrition on her child's obesity risk within this free living population living in poverty. These results suggest that the co-existence of very short stature and obesity appears to be primarily due to exposures and experiences within a generation rather than across generations
From z>6 to z~2: Unearthing Galaxies at the Edge of the Dark Ages
Galaxies undergoing formation and evolution can now be observed over a time
baseline of some 12 Gyr. An inherent difficulty with high-redshift observations
is that the objects are very faint and the best resolution (HST) is only ~0.5
kpc. Such studies thereby combine in a highly synergistic way with the great
detail that can be obtained for nearby galaxies. 3 new developments are
highlighted. First is the derivation of stellar masses for galaxies from SEDs
using HST and now Spitzer data, and dynamical masses from both sub-mm
observations of CO lines and near-IR observations of optical lines like Halpha.
A major step has been taken with evidence that points to the z~2-3 LBGs having
masses that are a few x 10^10 Msolar. Second is the discovery of a population
of evolved red galaxies at z~2-3 which appear to be the progenitors of the more
massive early-type galaxies of today, with dynamical masses around a few x
10^11 Msolar. Third are the remarkable advances that have occurred in
characterizing dropout galaxies to z~6 and beyond, < 1 Gyr from recombination.
The HST ACS has played a key role here, with the dropout technique being
applied to i & z images in several deep ACS fields, yielding large samples of
these objects. This has allowed a detailed determination of their properties
and meaningful comparisons against lower-z samples. The use of cloning
techniques has overcome many of the strong selection biases affecting the study
of these objects. A clear trend of size with redshift has been identified, and
its impact on the luminosity density and SFR estimated. There is a significant
though modest decrease in the SFR from z~2.5 to z~6. The latest data also allow
for the first robust determination of the LF at z~6. Finally, the latest UDF
ACS and NICMOS data has resulted in the detection of some galaxies at z~7-8.Comment: 18 pages, 8 figures. To appear in Penetrating Bars through Masks of
Cosmic Dust: The Hubble Tuning Fork Strikes a New Note, eds. D. Block, K.
Freeman, R. Groess, I. Puerari, & E.K. Block (Dordrecht: Kluwer), in pres
Rapid Evolution in the Most Luminous Galaxies During the First 900 Million Years
The first 900 million years (Myr) to redshift z~6 (the first seven per cent
of the age of the Universe) remains largely unexplored for the formation of
galaxies. Large samples of galaxies have been found at z~6, but detections at
earlier times are uncertain and unreliable. It is not at all clear how galaxies
built up from the first stars when the Universe was ~300 Myr old (z~12-15) to
z~6, just 600 Myr later. Here we report the results of a search for galaxies at
z~7-8, about 700 Myr after the Big Bang, using the deepest near-infrared and
optical images ever taken. Under conservative selection criteria we find only
one candidate galaxy at z~7-8, where ten would be expected if there were no
evolution in the galaxy population between z~7-8 and z~6. Using less
conservative criteria, there are four candidates, where 17 would be expected
with no evolution. This demonstrates that very luminous galaxies are quite rare
700 Myr after the Big Bang. The simplest explanation is that the Universe is
just too young to have built up many luminous galaxies at z~7-8 by the
hierarchical merging of small galaxies.Comment: Accepted for publication in Nature, 20 pages, 5 figures, 2 tables
(includes Supplementary Information), replaced to match version in pres
Segmentation of epidermal tissue with histopathological damage in images of haematoxylin and eosin stained human skin.
Background: Digital image analysis has the potential to address issues surrounding traditional histological techniques including a lack of objectivity and high variability, through the application of quantitative analysis. A key initial step in image analysis is the identification of regions of interest. A widely applied methodology is that of segmentation. This paper proposes the application of image analysis techniques to segment skin tissue with varying degrees of histopathological damage. The segmentation of human tissue is challenging as a consequence of the complexity of the tissue structures and inconsistencies in tissue preparation, hence there is a need for a new robust method with the capability to handle the additional challenges materialising from histopathological damage.Methods: A new algorithm has been developed which combines enhanced colour information, created following a transformation to the L*a*b* colourspace, with general image intensity information. A colour normalisation step is included to enhance the algorithm's robustness to variations in the lighting and staining of the input images. The resulting optimised image is subjected to thresholding and the segmentation is fine-tuned using a combination of morphological processing and object classification rules. The segmentation algorithm was tested on 40 digital images of haematoxylin & eosin (H&E) stained skin biopsies. Accuracy, sensitivity and specificity of the algorithmic procedure were assessed through the comparison of the proposed methodology against manual methods.Results: Experimental results show the proposed fully automated methodology segments the epidermis with a mean specificity of 97.7%, a mean sensitivity of 89.4% and a mean accuracy of 96.5%. When a simple user interaction step is included, the specificity increases to 98.0%, the sensitivity to 91.0% and the accuracy to 96.8%. The algorithm segments effectively for different severities of tissue damage.Conclusions: Epidermal segmentation is a crucial first step in a range of applications including melanoma detection and the assessment of histopathological damage in skin. The proposed methodology is able to segment the epidermis with different levels of histological damage. The basic method framework could be applied to segmentation of other epithelial tissues
The Morphology of the Rat Vibrissal Array: A Model for Quantifying Spatiotemporal Patterns of Whisker-Object Contact
In all sensory modalities, the data acquired by the nervous system is shaped by the biomechanics, material properties, and the morphology of the peripheral sensory organs. The rat vibrissal (whisker) system is one of the premier models in neuroscience to study the relationship between physical embodiment of the sensor array and the neural circuits underlying perception. To date, however, the three-dimensional morphology of the vibrissal array has not been characterized. Quantifying array morphology is important because it directly constrains the mechanosensory inputs that will be generated during behavior. These inputs in turn shape all subsequent neural processing in the vibrissal-trigeminal system, from the trigeminal ganglion to primary somatosensory (“barrel”) cortex. Here we develop a set of equations for the morphology of the vibrissal array that accurately describes the location of every point on every whisker to within ±5% of the whisker length. Given only a whisker's identity (row and column location within the array), the equations establish the whisker's two-dimensional (2D) shape as well as three-dimensional (3D) position and orientation. The equations were developed via parameterization of 2D and 3D scans of six rat vibrissal arrays, and the parameters were specifically chosen to be consistent with those commonly measured in behavioral studies. The final morphological model was used to simulate the contact patterns that would be generated as a rat uses its whiskers to tactually explore objects with varying curvatures. The simulations demonstrate that altering the morphology of the array changes the relationship between the sensory signals acquired and the curvature of the object. The morphology of the vibrissal array thus directly constrains the nature of the neural computations that can be associated with extraction of a particular object feature. These results illustrate the key role that the physical embodiment of the sensor array plays in the sensing process
Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector
Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
Seasonality of birth in children with central nervous system tumours in Denmark, 1970–2003
We investigated possible seasonal variation of births among children <20 years with a central nervous system tumour in Denmark (N=1640), comparing them with 2 582 714 children born between 1970 and 2003. No such variation was seen overall, but ependymoma showed seasonal variation
A propofol binding site on mammalian GABAA receptors identified by photolabeling
Propofol is the most important intravenous general anesthetic in current clinical use. It acts by potentiating GABA(A) receptors, but where it binds to this receptor is not known and has been a matter of some controversy. We have synthesized a novel propofol analogue photolabeling reagent that has a biological activity very similar to that of propofol. We confirmed that this reagent labeled known propofol binding sites in human serum albumin which have been identified using X-ray crystallography. Using a combination of the protiated label and a deuterated version, and mammalian receptors labeled in intact membranes, we have identified a novel binding site for propofol in GABA(A) receptors consisting of both β(3) homopentamers and α(1)β(3) heteropentamers. The binding site is located within the β subunit, at the interface between the transmembrane domains and the extracellular domain, and lies close to known determinants of anesthetic sensitivity in transmembrane segments TM1 and TM2
Genome-wide linkage and association study implicates the 10q26 region as a major genetic contributor to primary nonsyndromic vesicoureteric reflux
Abstract Vesicoureteric reflux (VUR) is the commonest urological anomaly in children. Despite treatment improvements, associated renal lesions – congenital dysplasia, acquired scarring or both – are a common cause of childhood hypertension and renal failure. Primary VUR is familial, with transmission rate and sibling risk both approaching 50%, and appears highly genetically heterogeneous. It is often associated with other developmental anomalies of the urinary tract, emphasising its etiology as a disorder of urogenital tract development. We conducted a genome-wide linkage and association study in three European populations to search for loci predisposing to VUR. Family-based association analysis of 1098 parent-affected-child trios and case/control association analysis of 1147 cases and 3789 controls did not reveal any compelling associations, but parametric linkage analysis of 460 families (1062 affected individuals) under a dominant model identified a single region, on 10q26, that showed strong linkage (HLOD = 4.90; ZLRLOD = 4.39) to VUR. The ~9Mb region contains 69 genes, including some good biological candidates. Resequencing this region in selected individuals did not clearly implicate any gene but FOXI2, FANK1 and GLRX3 remain candidates for further investigation. This, the largest genetic study of VUR to date, highlights the 10q26 region as a major genetic contributor to VUR in European populations
- …