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ABSTRACT

Vesicoureteric reflux (VUR) is the commonest urological anomaly in children. Despite treatment improvements, associated

renal lesions – congenital dysplasia, acquired scarring or both – are a common cause of childhood hypertension and renal

failure. Primary VUR is familial, with transmission rate and sibling risk both approaching 50%, and appears highly genetically

heterogeneous. It is often associated with other developmental anomalies of the urinary tract, emphasising its etiology as

a disorder of urogenital tract development. We conducted a genome-wide linkage and association study in three European

populations to search for loci predisposing to VUR. Family-based association analysis of 1098 parent-affected-child trios and

case/control association analysis of 1147 cases and 3789 controls did not reveal any compelling associations, but parametric

linkage analysis of 460 families (1062 affected individuals) under a dominant model identified a single region, on 10q26, that

showed strong linkage (HLOD=4.90; ZLRLOD=4.39) to VUR. The ∼9Mb region contains 69 genes, including some good

biological candidates. Resequencing this region in selected individuals did not clearly implicate any gene but FOXI2, FANK1

and GLRX3 remain candidates for further investigation. This, the largest genetic study of VUR to date, highlights the 10q26

region as a major genetic contributor to VUR in European populations.

Introduction

Primary vesicoureteric reflux (VUR), the retrograde flow of urine from the bladder through the vesicoureteric junction into the

upper urinary tract, is the most common renal tract malformation. VUR is usually a benign condition but chronic kidney damage

triggered by ascending pyelonephritis and also congenital kidney hypo/dysplasia (collectively known as reflux nephropathy,

RN) can occur and lead to end stage renal disease1, 2. Other congenital anomalies of the kidney and urinary tract (CAKUT)

commonly occur along with VUR. The oft-quoted prevalence of VUR is 1-2% but the true prevalence may well be higher3, 4.



The disease has been suggested to be twice as common in females as males5 but this most likely reflects an ascertainment bias,

and other studies have detected only a slight excess of incidence in females compared to males6, 7. The prevalence of VUR

tends to decrease with age5, and serial studies of individual patients show VUR can spontaneously regress during childhood in

a subset of initially affected individuals1, 8. Screening studies of first-degree relatives of individuals with VUR identifies VUR

in one third to one half of siblings9, 10 and 65% of offspring11. This observation, coupled with the high concordance of primary

VUR in identical twins12 and the identification of families with multiple generations affected by primary VUR and RN13, 14,

suggests that there may be a substantial genetic component to VUR. However, large-scale genetic studies of VUR carried out to

date have been somewhat disappointing and generally rather inconclusive. Although there have been some compelling findings

in individual large families, overall, little concordance is seen between the results from different studies13–23, supporting the

notion that the condition is genetically heterogeneous. Here we combined data from the two largest genetic studies of VUR

conducted to date19, 22, comprising three separate cohorts (from Ireland, the UK and Slovenia), to investigate whether the

increased power obtained from use of a larger sample size could help identify genetic contributors operating across multiple

affected families/individuals from these three European populations.

Results

Genome-wide Association Analyses

Family-based association analysis carried out using the transmission/disequilibrium test (TDT)24 produced no compelling

association signals (Supplementary Figure S1), similar to what had been seen previously19, 22 in individual analysis of

the separate cohorts. Case/control analysis of our VUR cases together with population-based controls from Ireland (851

Trinity College Dublin/Irish Blood Transfusion Service BioBank controls22) and the UK (2938 Wellcome Trust Case Control

Consortium controls19, 25) similarly produced no compelling association signals. We note that the relatively sparse SNP set

available for association analysis (see Methods) provides incomplete genome coverage with levels that are probably, at best,

close to the 31% coverage provided by the Affymetrix 111K array26. Therefore, our results do not preclude the possibility

that common variants associated with VUR exist, but we would need to genotype our UK/Slovenian samples (and ideally

further additional samples, including Slovenian controls) with a much denser genotyping array in order to answer this question

definitively.

In an attempt to improve genome coverage, we carried out genotype imputation using the Michigan Imputation server27

with the Haplotype Reference Consortium (HRC) reference panel28, treating the Irish and UK/Slovenian cohorts separately

(since they had very different numbers of QCed genotyped SNPs available to inform imputation). We then repeated the TDT

association analysis at all SNPs passing post-imputation QC (Supplementary Figure S2); this analysis included 3,600,157 SNPs

for the UK/Slovenian cohorts 6,277,126 SNPs for the Irish cohort, and 3,563,212 SNPs for all three cohorts combined. One

region on chromosome 20 showed genome-wide levels of significance (p-value < 1×10−8) when analysis was restricted to the

UK/Slovenian cohort, however this association was not replicated in the Irish or combined cohorts (Supplementary Figure S2,

Supplementary Table S1) and visualisation of the association pattern in the region using LocusZoom29 (Supplementary Figure

S3) showed a slightly unusual pattern, leading us to suspect that this may be an imputation artefact. Specifically, a number of

SNPs that are known to be highly correlated with the lead SNP rs6138998 (chr20:357700) on the basis of European reference

data from the 1000 Genomes Project30 (as indicated by their color coding in Supplementary Figure S3) show much lower

levels of association (smaller log10(p-values)) than is seen at the lead SNP, suggesting an inconsistency between results that

should in reality be highly concordant. A single SNP on chromosome 6 showed genome-wide levels of significance (p-value

< 1×10−8) in analysis of the combined cohorts (Supplementary Figure S2, Supplementary Table S1), but again visualisation

of the association pattern in the region (Supplementary Figure S4) showed an unusual pattern, with SNPs that are known to

be correlated with the lead SNP rs11759064 (chr6:162800665) showing much lower levels of association than is seen at the

lead SNP, leading us to again suspect that this may be an imputation artefact. Given the lack of definitive replication of the

chromosome 20 signal and the unusual patterns of association/linkage disequilibrium seen at both signals, we chose not to take

either of these findings forward for further interrogation at this time.

Genome-wide Linkage Analyses

Parametric linkage analysis under a recessive model gave no strong evidence for linkage at any genomic location (data

not shown). However parametric linkage analysis under a dominant model, as well as non-parametric linkage analysis,

identified a single genomic location (focused around rs7907300 on chromosome 10q26) showing strong evidence (HLOD=4.90;

ZLRLOD=4.39) for linkage to an underlying disease locus (Figure 1), with an estimated proportion (α) of linked families of

α ≈ 30%. This region had shown some evidence of linkage in the previous separate analyses of these cohorts19, 22 and, indeed,

had been highlighted as one of the top findings in the Irish cohort by Darlow et al.22, although the significance achieved in that

previous analysis (HLOD=2.34, ZLRLOD=2.06) was not sufficient to definitively conclude the presence of a disease locus in

the region. In previous analysis of the UK/Slovenian cohorts19 this region had achieved an HLOD of 2.44 and a ZLRLOD of
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1.55 in an expanded set of families where affection status was coded as positive for either VUR or RN. Cordell et al.19 had

further noted that the signal of linkage increased to ZLRLOD=2.32 when analysis was restricted to families where affection

status was coded as positive for VUR (regardless of RN status), as in the current analysis.

We investigated the sensitivity of our parametric linkage analysis results to slight changes in the assumed parameters of the

underlying dominant model, but found this did not have any substantial effect. In particular, changing the assumed disease

allele frequency from 0.001 to 0.01 (as had been used in previous analysis of these data sets19, 22), while retaining dominant

penetrances (0.01, 0.99 and 0.99), resulted in a slightly increased maximum HLOD of 5.07 at the same genomic location

(rs7907300).

To clarify the relative contributions of the individual cohorts to the current results, we repeated the parametric (dominant

HLOD) analysis within each cohort separately and within the UK/Slovenian cohorts combined (Figure 2). The strongest

contribution to the 10q26 signal appears to come from the (larger) Irish and Slovenian cohorts, although combining the UK and

Slovenian cohorts (as was done previously19) produces a reasonably compelling linkage signal. Neither the individual cohorts

nor the UK/Slovenian combined cohort achieve the HLOD of 3.3 that would most probably be required to conclude ‘significant’

linkage31 (allowing for the fact that the LOD score has been maximized over two models – recessive and dominant – as well

as over a heterogeneity parameter α , the proportion of linked families) but the results are certainly consistent with the much

stronger (and highly significant) effect seen here when all three cohorts are combined.

As is often the case in linkage studies, the plausible region within which the underlying disease lies is very large, containing

44 genes in the central ∼ 7Mb region or 69 genes in the wider ∼ 9Mb region (Supplementary Table S2). Figure 3a shows a

‘close-up’ of the signal with circles corresponding to HLOD values at the SNPs used to perform linkage analysis, while Figure

3b shows a LocusZoom29 plot of the equivalent p-values (calculated using the method of Huang and Vieland32) for those SNPs

lying within the main peak of significance bounded by red dashed lines in Figure 3a. (Although these p-values may seem less

impressive than those generally seen in LocusZoom plots from genome-wide association studies, we note that the appropriate

threshold for declaring genome-wide significance is very different in linkage studies compared to association studies33, with

genome-wide significance in affected-sib-pair linkage studies corresponding to a p-value of around 2.2×10−5). The 4 genes

omitted from the LocusZoom plot in Figure 3b (C10orf88, ACADSB, HMX2 and BUB3) all lie to the left of (proximal to)

GPR26 and thus would probably not be considered good candidates for harboring causal mutations, given the decrease in

linkage signal observed within this section of the plot, but any of the genes to the right of GPR26 might be considered good

positional candidates.

Regional Association Analyses

To investigate evidence for allelic association within the implicated 10q26 linkage region, we examined more closely our

results from HRC imputation (followed by TDT association analysis) within the 12 Mb region spanning the linkage signal

(Supplementary Figures S5-S7). In the Irish cohort (Supplementary Figure S5), a suggestive association signal (p-value

2.1×10−6) is seen at around 129.5 Mb (Build 37). This is not replicated in the UK/Slovenian cohorts (Supplementary Figure

S6), however further inspection revealed that these SNPs had not passed post-imputation QC in the UK/Slovenian cohorts, on

account of imputation Rsq values ≈ 0.66. When we retain these SNPs for analysis (taking the view that Rsq values of 0.66

represent a reasonable level of imputation quality) they do not, in fact, replicate the Irish findings (Supplementary Table S3):

only nominal levels of significance are reached with the transmission patterns (and odds ratios) going in the opposite drection

from that seen in the Irish cohort. We also note that this Irish signal lies some distance away from the location of the top linkage

signal (at 127.7 Mb) and is thus anyway unlikely to be a strong contender for explaining the linkage signal.

In the UK/Slovenian cohorts (Supplementary Figure S6), association signals are seen at 126.0 Mb (p-value 1.1×10−6),

127.6 Mb (p-value 8.7×10−6), 128.4 Mb (p-value 6.1×10−6) and 131.5 Mb (p-value 2.9×10−7). However these signals are

not replicated in the Irish cohort (Supplementary Figure S5, Supplementary Table S3). Moreover, only one of these signals lies

close to the location of the top linkage signal. When the combined cohorts are analysed (Supplementary Figure S7), no SNPs

pass the suggestive significance threshold of p-value 1.0×10−5).

The weak/inconsistent evidence of association seen within the 10q26 linkage region suggests that common alleles are

unlikely to be contributing to the linkage signal; indeed this scenario would seem a priori unlikely given the underlying

Mendelian dominant model (operating in ≈ 30% of families) that was used to generate the linkage signal in the first place. A

far more likely scenario is that the linkage signal is caused by heterogeneous mutations operating within different families in a

dominant or dominant-like fashion. Given that the TDT can be considered as a test of linkage in the presence of association

(particularly when applied to non-independent affected sibs, as here) we conclude that the apparent TDT association signals

seen most likely reflect linkage between alleles at the relevant SNPs and mutations at the underlying disease locus, coupled

with perhaps low levels of allelic association (linkage disequilibrium) between alleles at these loci in the founders.
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Exome sequencing within 10q26 region

To interrogate in more detail the genes in the implicated 10q26 region, we performed whole-exome sequencing in a subset

of our families. Next-generation sequencing has been extremely successful for the detection of disease-causing mutations

in Mendelian, monogenic disorders34–40, especially when applied to multiple affected individuals originating from the same

family. A caveat in relation to our own study, however, is that we expect that only around 30% of our families will actually

harbor mutations at the disease-causing genetic element in the 10q26 region (and, indeed, the accuracy of this estimate of

30% depends on the parameters of the underlying assumed dominant disease model being approximately correct). Prioritizing

affected individuals from families where affected sibs shared alleles IBD, we whole-exome sequenced 29 individuals from the 8

families (two UK, two Slovenian, four Irish) showing the strongest evidence of linkage in the 10q26 region. There were 37,930

non-synonymous variants called across the whole exome in the 29 individuals. Of these, 139 occurred within the 10q26 region

of interest and 37 of these were relatively rare (allele frequency < 0.05) in the 1000 Genomes and Exome Sequencing Project

data sets. Of these relatively rare variants, 23 were found within the same gene in two or more individuals (for 7 different genes)

and 6 were predicted to be deleterious by at least one predictor out of SIFT/PolyPhen/MutationTaster41–43 (Supplementary

Table S4). However, further interrogation of the sequences indicated that only one of these genes, FANK1, harbored rare

variants that were consistent with the IBD sharing and inheritance patterns seen within multiple families (Supplementary Table

S5). Further investigation of FANK1 using 189 European sequences from the 1000 Genomes Project identified 715 variants, of

which 407 were ‘rare’ (alternative allele frequency AAF < 0.05). Only 7 of the 189 1000 Genomes Project sequences had no

rare variants at all, suggesting that the detection of rare variants in FANK1 in our own VUR cases is not, in fact, a rare event,

and so may not necessarily be related to their phenotype. Moreover, given a VUR population prevalence of up to 3%, we note

that the ‘rare’ FANK1 variants listed in Supplementary Table S5 are actually much too common to realistically be considered as

causes of VUR, without invoking a model involving extreme reduced penetrance.

Targeted sequencing within 10q26 region

Given that we did not find any fully convincing causal variants for VUR within the coding parts of the 10q26 region (in the

8 families we examined), a plausible explanation is that such variants may be found within non-coding, regulatory regions.

To investigate this possibility, we performed targeted genomic resequencing of the implicated 9Mb region of 10q26 (from

123Mb–132Mb) in 32 unrelated affected individuals from those families in our data set that contributed the most to the linkage

signal (the 8 families that had been whole-exome sequenced and 24 others). Of the 34,412 single nucleotide variants (SNVs)

passing standard quality control steps, we identified 9170 that were either absent or present at less than 1% in the 1000

Genomes European data, 3625 of which were also shared between affected individuals (i.e. were present in at least two of

the 32 individuals sequenced). We consider this large number of SNVs identified as showing frequency differences between

our samples and the 1000 Genomes European samples as most likely to be artefacts arising from the systemic differences in

read depth, alignment and variant-calling pipelines between cases and controls. Concentrating on rare SNVs found within

promoters in our 9Mb target region, we found that 69 of 80 promoter-region SNVs occurred within the promoter of FANK1,

while 11 occurred within the promoter of genes other than FANK1 (Supplementary Table S6). Arguably the most interesting of

the non-FANK1 genes is GLRX3, which harbors a rare haplotype seen in 8 out of our 32 VUR cases. However, the location of

GLRX3 at the far end of the implicated 9Mb region, distal to the main peak of linkage (Figure 3), argues against it being a

strong positional candidate for explaining the linkage signal. In addition, inspection of the sequencing reads in the relevant 8

VUR cases indicates that the alternative alleles are only seen in the first or last 25 bp of any given read, and only in ∼ 15% of

high-quality reads, which may be cause for caution. However, it would certainly be interesting to attempt to validate these

observations in these 8 VUR cases using alternative sequencing methods, and, assuming that they validate, to further investigate

whether rare variants in GLRX3 occur in a significant proportion of our VUR cases.

With respect to FANK1, further interrogation of the .bam files showed that the FANK1 region appears to be hypervariable

and many of the called SNVs were clearly artefacts (Supplementary Figure S8). After extensive investigation, only 11 of the 69

FANK1 SNVs appeared potentially genuine (Supplementary Table S7). These included a G/C SNV at 127,584,687 bp and

an immediately adjacent C/A SNV at 127,584,688 bp which appeared as heterozygous in all 30 (out of the 32) individuals in

which it was called. The variant calls appeared genuine, however we interpret these results with caution since, from our linkage

analysis, we are only expecting putative causal variants to be shared in around 10 to 15 of our samples; the sharing of the same

causal variant by 30 affected individuals from 30 different families seems somewhat suspicious.

Our suspicions were confirmed when we performed a BLAST search on the 500 bp sequence around these SNVs, and

found that the sequence containing the alternative C and A alleles at 127,584,687 and 127,584,688 bp respectively showed high

levels of sequence similarity to the short arm of chromosome 22 on the GRCh38 build of the genome (which is unmapped in

GRCh37), as well as to the desired 10q26 region. This observation led us to re-align our targeted sequences to the GRCh38

assembly. 9 of the 11 previously identified SNVs in the FANK1 promoter region were found to align fully to chromosome

22, with only the two at 127,584,687–127,584,688 bp (125,896,118–125,896,119 bp on GRCh38) mapping to chromosome
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10. This suggests that a number of the reads identified by our pipeline as mapping to 10q26 may in fact really come from

chromosome 22, offering a possible explanation for the unusually high level of variability observed (Supplementary Figure S8).

Further investigation revealed that the 42.4 kb region of chromosome 10 from 125,885,884 to 125,928,375 contains

segmental duplications from at least 4 other genomic locations (Supplementary Figure S9). We consider that these segmental

duplications are most likely to have generated the high proportion of rare variants recorded for FANK1 and its promoter, which

therefore represent artefactual findings unrelated to the VUR phenotype. More sophisticated experimental methods (such as

amplification via long-range PCR prior to sequencing, or the use of longer-read sequencing technologies) will therefore be

required in order to robustly interrogate this 42.4 kb region, without danger of contamination from other genomic regions.

TASER analysis

The analyses described above compared observed allele frequencies in our VUR cases to those in publicly available summary

data provided by the 1000 Genomes Project (and similar resources), in order to identify putative causal variants. To achieve a

better comparison between our sequenced VUR cases and phenotypically normal controls, we obtained the .bam files from

1106 ALSPAC controls44 sequenced as part of the UK10K study45. Data sets such as UK10K are usually sequenced at low

coverage (typically 2–20 fold) whereas our own sequences have up to 1000 fold coverage in the target region. Analysis of

sequence data where there are systemic differences in coverage between cases and controls typically leads to inflated type I

errors46, but discarding those samples with insufficient read depth can result in a loss of power (or, in this case, the loss of all

controls). We therefore used the software package TASER47, which effectively re-calls variants in both cases and controls,

allowing for systematic differences in read depth (and other factors), at the same time as constructing a test statistic.

In an adaptation of the original implementation of TASER, which splits the entire genome into small windows of interest

(corresponding, for example, to genes or exons of genes), we considered our entire target region to be ‘of interest’. For each of

the 1106 ALSPAC control sequences and 32 VUR case sequences, we split the target DNA sequence into consecutive 120 bp

windows with 30 windows included within a processing ‘block’. This resulted in 2490 blocks covering the entire sequence

from 121,240,479 bp to 130,201,779 bp (GRCh38) on chromosome 10. Only bases called with a quality score > 30 were

added to the read count at each position. We found that only counting alleles that are seen at least twice in the low depth

control sequences and at least 5 times in the high depth VUR sequences (in order to reduce the expected number of sequencing

artefacts) improved the overall distribution of test statistics (Supplementary Figure S10), which, nevertheless, were slightly

lower than expected under the null hypothesis (genomic control factor48 λ = 0.76). With the MAF filtering threshold set to

0.05 in the base population, we obtained a few signals that were mildly suggestive of association but nothing that reached

experiment-wide significance. The output of the current implementation of TASER does not indicate the position of the variants

contributing to the test statistic within each window, but by inspecting the input and .bam files we were able to identify the

probable variant driving the signal and discount any signals caused by sequencing error (3 out of the top 10 signals). The top

findings (Supplementary Table S8) included two rare SNPs (rs183471950 and rs541040960) in two different introns of TEX36,

a single T insertion in an intron of DOCK1 (rs551248465), a SNP approximately 3 kb upstream of FAM175B (rs533072490)

and a further three SNPs in the intergenic region between LINC01163 and MGMT: rs146303503, rs182100352 and an unknown

G/A substitution at position 128770839. Given the relatively low frequencies of all these variants seen within the VUR cases,

and the relative lack of statistical significance obtained (given the overall number of windows tested), we do not consider any of

these results particularly compelling.

In addition to the findings listed in Supplementary Table S8, we found that the windows spanning the 42 Kb segmental

duplication region around FANK1 showed high levels of variation within both cases and controls, offering yet more evidence

that the putative causal variants identified by exome and targeted sequencing are almost certainly artefacts derived from

amplification of highly similar sequence from multiple chromosomes. Further investigation of this region in selected samples

via long-range PCR has identified several more currently undescribed segmental duplications, in addition to the four already

discussed (data not shown). Thus this region, containing the key candidate gene FANK1, remains effectively untargeted by our

current sequencing endeavours, due to our inability to reliably map the sequence reads in this region.

Gene expression in Normal Human Urothelial (NHU) cells

To help further prioritize genes in the implicated chromosome 10q26 region, data on gene expression by in vitro-propagated

cultures of Normal Human Urothelial (NHU) cells in different differentiation states were obtained from Fishwick et al. (2017)49.

Results (Figure 4) indicated relatively high levels of gene expression of several genes of interest including BUB3, OAT and

GLRX3 – although, as mentioned previously, the locations of BUB3 and GLRX3 (outside the main peak of linkage) argue

against these being strong positional candidates for explaining the linkage signal. OAT, the only one of the three highest

expressed genes in normal urothelium to be moderately near to the centre of the linkage region, encodes the mitochondrial

enzyme ornithine aminotransferase, so is an unlikely candidate on grounds of function.
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Discussion

Here we have identified, through genome-wide parametric and non-parametric linkage analysis, a region on 10q26 that shows

strong evidence of harboring genetic variants contributing to primary nonsyndromic VUR. As is often the case in linkage studies,

the plausible region in which the underlying disease locus must lie is very large, and, despite our attempts via association

analysis and targeted sequencing (in a subset of samples), we have, as yet, been unable to find variants within the region

that plausibly account for the linkage signal observed, although the promotor of GLRX3 remains a key region for further

investigation. Moreover, given our discovery that the 42.4 kb region of chromosome 10 from 125,885,884 to 125,928,375

contains segmental duplications from other genomic locations, this region (which contains the key candidate gene FANK1)

remains effectively untargeted by our current sequencing endeavours. More sophisticated methods (such as amplification via

long-range PCR prior to sequencing, or the use of longer-read sequencing technologies) will be required in order to robustly

interrogate this region, without danger of contamination with sequence from other genomic regions.

There are five genes on chromosome 10 that are already known to be involved in urinary tract development22, four of

which lie close to the 10q26 region implicated here, in addition to another, as yet unidentified, gene near the 10q telomere50.

However, these previously-implicated genes lie mostly outside our main peak of linkage. According to the gene expression

atlas GUDMAP (GenitoUrinary Development Molecular Anatomy Project)51, 52, mouse homologues of most of the human

genes in the critical Chr10 locus are normally expressed in at least one site in the developing murine kidney and urinary tract. It

is, however, of particular note that: Cpxm2 is expressed in the mature ureter and bladder; Fam53 is expressed in the developing

and mature ureter; Dhx32 is expressed in the developing and adult ureter and bladder; Adam12 is expressed in the developing

ureter and bladder; and Ptpre is expressed in the developing and adult ureter. Expression during in vitro differentiation of

normal human urothelial cells might be considered a more relevant factor than mouse gene expression data obtained from

GUDMAP, and indeed there are proven human VUR genes that encode tenascin XB and uroplakins which are expressed in

the urothelium23, 53, 54. Cross-referencing the genes in our implicated 10q26 region with expression data from normal human

urothelial cells49 highlighted several genes of interest including BUB3, OAT and GLRX3. Of these, only OAT would seem a

strong positional candidate, but is a highly unlikely candidate on grounds of function. Our other key candidate, FANK1, was

also expressed, albeit at a low level. However, this analysis of human urothelial cells comes with the caveat that epithelium is

just one type of tissue found in the urinary tract, and we do not currently have similar data for other components such as nerve

and muscle/mesenchyme.

Arguably the best candidate gene in the region is FGFR2, which has been implicated in induction abnormalities of the

ureteric bud and development of VUR in mice55–58. However, the localisation of FGFR2 outside our main peak of linkage

argues against it being a strong candidate for harboring the mutations that contribute to the linkage signal detected in our

families. It is worth mentioning that FGFR2 is involved not only in the embryonic development of the metanephric urinary

tract but also in that of the skeleton and skin, and mutations in the gene in humans can cause Crouzon syndrome, Pfeiffer

syndrome, Apert syndrome, Jackson-Weiss syndrome, Beare-Stevenson cutis gyrata syndrome, or Saethre-Chotzen syndrome.

Demonstration of VUR in mice58 was achieved by conditional knock-out of Fgfr2 very specifically in the peri-Wolffian duct

stromal cells only, and therefore any mutation causing non-syndromic VUR or other CAKUT in humans that affects FGFR2 is

likely to be in a non-coding regulatory element that affects expression of the gene in the developing urinary tract but has no

effect on its expression in other tissues. Since most, if not all, genes already known to be involved in urinary tract development

are also known to be involved in the development of other structures, including the eye, the ear, the branchial clefts (and

structures that develop in them, such as the thyroid gland) the skeleton and the gut, it is quite possible that most mutations that

cause VUR will be regulatory mutations and in non-coding DNA, whatever gene they affect.

A stronger positional candidate, given the linkage evidence, is FOXI2. GUDMAP shows that Foxi2 is very highly expressed

in the mouse metanephric mesenchyme at the appropriate time to stimulate the growth of the ureteric bud. However, our

investigation of expression in human urothelial cells failed to detect FOXI2 expression. In 2009 the Irish group used Sanger

sequencing to explore this gene, including all the untranslated sequence, 1 kb of promoter sequence upstream, and several

highly conserved non-coding regions in the gene desert at distances up to 1 Mb away, in 232 VUR index cases. Eleven of the

variants found in the conserved intergenic elements had ‘Restricted Substitution’ (GERP) scores > 4, of which four have still

not appeared in dbSNP, and, of these, one is immediately adjacent to a predicted POU3F1 binding-site and another is within

a predicted PRRX2 binding-site. Pou3f1 and Prrx2 are both expressed in mouse metanephric mesenchyme, the latter very

highly. However, functional experiments would need to be carried out to determine whether any of the variants actually affect

expression and, if so, which gene is affected. FOXI2 itself was sequenced at that time in case there might be a mutation in

the gene which would help to confirm its candidacy. Only two novel variants with GERP scores > 2 were found in the gene,

neither of which were likely pathogenic, and there was not an opportunity to pursue investigation of the intergenic variants at

that time. Sequencing right across the whole linkage region with a larger number of patients (and controls) should hopefully

enable identification of the correct regulatory element(s), but it is still very likely that functional testing will be required to

determine which gene is affected.
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In conclusion, this, the largest genetic study of VUR to date, provides strong evidence for the 10q26 region as the major

genetic contributor to primary nonsyndromic vesicoureteric reflux in European populations. Definitive identification of the

causal variants contributing to this observation will be required in order to identify the mechanism involved. Removal of

families with pathogenic mutations in this region (once identified) from the data set should make it easier to identify, by

reanalysis, the next most important of the many loci expected to be responsible for VUR in the 70% or more of families that are

not linked to 10q.
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Methods

Samples and Genotyping

We combined data from the two largest genetic studies of VUR conducted to date19, 22. Full details of sample collection,

phenotype definition and genotyping can be found in the primary publications from these studies19, 22. In brief, one study22

consisted of 235 Caucasian families (500 affected individuals) collected from two hospitals in Dublin, Ireland. Families with

two or more affected members with primary VUR of any grade were collected; the majority of the families were nuclear

(affected-sib-pair) families containing two siblings with VUR, with genotype data available for siblings and both parents.

Six family-members (three parents and three siblings) of VUR patients who had CAKUT (without detected VUR) were also

counted as affected. The other study19 included two separate cohorts, one from the UK and one from Slovenia. The UK

cohort comprised 165 Caucasian families (303 affected offspring) collected from multiple centres across the UK; similar to the

Irish cohort the majority of the families were nuclear (affected-sib-pair) families containing two siblings with VUR and with

genotype data available for siblings and both parents. The Slovenian cohort comprised 148 Caucasian families (353 affected

individuals, 313 affected offspring) collected from the University Medical Centre, Ljubljana; again the majority of the families

were nuclear (affected-sib-pair) families containing two siblings with VUR, with genotype data available for siblings and both

parents.

The classical grading system for VUR59 involves classifying the disease into (increasingly severe) grades from I-V according

to the site and severity of reflux based on the degree of filling and dilation of the uteter and upper urinary tract, as assessed by

cystography. In the Irish cohort, VUR was diagnosed via micturating cystourethrograms allowing VUR grade to be determined

in 96% of patients, however, in the UK/Slovenian cohorts, we elected at the start not to include this concept in the analyses.

This was because a. the classic grading system was not in fact always used in the micturating cystogram reports and b. the same

grading system is not generally used for radioisotope cystograms, a techique increasingly used to diagnose VUR. Thus, for the

analyses described here, we considered VUR to be radiologically proven, but did not consider its grade.

Because of sample drop-out, affection status and family structure, not all samples/families constributed to all analyses. We

estimated that 199 Irish families (467 affected individuals), 121 UK families (258 affected individuals) and 140 Slovenian fami-

lies (337 affected individuals) contributed to the linkage analyses presented here. Slightly larger numbers of families/individuals

contributed to association analysis (family-based and case/control), as association analysis could potentially make use of family

structures that were uninformative for linkage (such as families where only one affected individual remained, following strict

quality control (QC) procedures). The female:male gender ratio for patients used in the genetic analyses was 1.49 in the Irish

cohort, 1.29 in the UK cohort (slightly higher than the 1.21 ratio seen in the full UK cohort60) and 2.04 in the Slovanian cohort.

We chose not to reduce our sample size by stratifying the analysis by gender, which for genetic studies would in any case only

be likely to have any substantial effect with regards to variants on the X chromosome. We also chose not to formally account

for age of diagnosis in the analysis, taking the view that for genetic studies the most relevant measure is simply the fact that

an individual is affected, and whether this can be related to their genotype or shared genotype with other affected relatives.

However, given that the prevalence of VUR decreases with age (on account of spontaneous resolution), we counted siblings of

affected children who were not investigated until later ages as unknown for VUR affection status, if VUR was not found.

The UK/Slovenian study, intitially conceived as a linkage study, made use of a relatively sparse genotyping array, the

Affymetrix NspI array, containing 262,264 genome-wide SNPs. Following ‘medium-level’ QC checks19, 134,350 SNPs in

the UK and Slovenian cohorts remained available for analysis. The Irish cohort was genotyped on the on the Affymetrix

Genome-Wide Human SNP Array 6.0, containing 834,482 genome-wide SNPs. Following QC checks22, a final set of 643,691

SNPs in the Irish cohort remained available for analysis. The density of the final set of SNPs available is more than sufficient

for genomewide linkage analysis (for which only 2-3 SNPs of high minor allele frequency per cM are required) in all three

cohorts; however, for genomewide association analysis, the UK and Slovenian cohorts are most likely underpowered with

respect to providing full genome coverage, as illustrated by the fact that in imputation analysis (see below) only 3,600,157

SNPs were successfully imputed for the UK/Slovenian cohorts, in comparison to 6,277,126 SNPs for the Irish cohort.

Genome-wide Association Analyses

Family-based association analysis using the transmission/disequilibrium test (TDT)24, implemented in the program PLINK61

and applied to all affected sibs (assumed to be independent, conditional on parental genotype), was carried out at the subset of

119,548 genotyped autosomal and X-chromosomal SNPs passing quality control checks in all three cohorts. (TDT analysis

within the separate cohorts and in the combined UK/Slovenian cohort had been carried out previously19, 22, without detecting

any compelling (e.g. genome-wide significant) associations or any significant asociations that replicated across different

cohorts).

We also performed case/control analysis of our VUR cases together with population-based controls from Ireland (851

Trinity College Dublin/Irish Blood Transfusion Service BioBank controls22) and the UK (2938 Wellcome Trust Case Control

Consortium controls19, 25) at 108,134 autosomal SNPs passing QC in all case and control cohorts. This analysis was carried out
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using a linear mixed modelling approach implemented in the software FaST-LMM62 in order to adjust for both relatedness

between cases and population differences between cases and controls63–66.

Genome-wide Linkage Analyses

We carried out multipoint parametric and non-parametric linkage analysis on the combined Irish/ UK/Slovenian cohorts using

the software packages MERLIN and MINX67. To construct a suitable SNP set for multipoint linkage analysis, we first pruned our

data set to include only those SNPs with minor allele frequencies greater than 0.3 and showing low levels of inter-marker linkage

disequilibrium (using the PLINK command “--indep 50 5”), and then thinned the data to use only the two SNPs with the

highest heterozygosity in each 1cM window, using the program MapThin (http://www.staff.ncl.ac.uk/richard.howey/mapthin/).

Information content plots from MERLIN and MINX indicated that the resulting SNP set (containing 6585 autosomal and 337

X-chromosomal SNPs) achieved high levels of information content (≈ 95%) across the entire genome (data not shown).

Parametric linkage analysis allowing for heterogeneity (an “HLOD” analysis) was carried out assuming a disease allele

frequency of 0.001 and either a recessive (penetrances 0.01, 0.01 and 0.99) or dominant (penetrances 0.01, 0.99 and 0.99) model.

(Results were found to be not too sensitive to small perturbations of these assumed disease allele frequencies and penetrances).

We chose to assume a slightly rarer disease allele frequency (0.001) than the 0.01 that had been used in previous (separate)

analyses of these data sets, in order to better match our expectation that the disease is highly genetically heterogeneous and so

the population frequency of any particular causal genetic variant is likely to be small. Non-parametric linkage analysis was

carried out using the equivalent LOD score to the Kong and Cox exponential model likelihood-ratio allele-sharing test68, which

we denote here as “ZLRLOD”.

Imputation Analysis

To improve genome coverage, allowing interrogation of a denser set of SNPs, we carried out SNP imputation followed by TDT

association, treating the Irish and UK/Slovenian cohorts separately (since they had very different numbers of QCed genotyped

SNPs available to inform imputation). We used the Michigan imputation server27 with the Haplotype Reference Consortium

(HRC) reference panel28 and pre-phasing performed via Eagle269. ‘Best-guess’ imputed genotypes were used, subject to the

posterior probability of the genotype call exceeding 0.9. To ensure that only high-quality imputed SNPs were included in the

final set, imputed SNPs were filtered to include only those with minor allele frequency > 0.02 and imputation Rsq > 0.8.

Exome sequencing within 10q26 region

We whole-exome sequenced 29 individuals from the 8 families (two UK, two Slovenian, four Irish) showing the strongest

evidence of linkage in the 10q26 region. Sequencing was carried out by AROS using Illumina’s Nextera Rapid Capture

Exome Kit followed by 100bp paired end sequencing (6 samples per flow cell lane) on the Illumina HiSeq 2000/2500 platform.

Sequences were aligned to the Human GRCh37 assembly using BWA70 and variant calling was performed with the GATK

HaplotypeCaller algorithm following best practice recommendations71–73. Sequencing reads were examined via visualisation

of the .bam files in IGV74.

Targeted sequencing within 10q26 region

We performed targeted genomic resequencing of the implicated 9Mb region of 10q26 (from 123Mb-132Mb) in 32 unrelated

affected individuals from the families in our data set that contributed most to the linkage signal. Sequencing was carried out by

Oxford Gene Technology (OGT) (whose next generation sequencing services have now been transferred to Source BioScience)

using SureSelectXT Custom 9Mb design and capture followed by 100bp paired end sequencing (11 samples per flow cell lane)

on the Illumina HiSeq 2000 platform. Sequences were again aligned to GRCh37 with BWA, variants were called with GATK

HaplotypeCaller following best practice recommendations, and reads were visualised via IGV74.

TASER analysis

We analysed the targeted resequencing data from the 32 unrelated affected individuals together with whole-genome sequence

data from 1106 ALSPAC controls44 sequenced as part of the UK10K study45. We used the software package TASER47, which

effectively re-calls variants in both cases and controls, allowing for systematic differences in read depth (and other factors),

at the same time as constructing a test statistic. TASER uses the total number of reads mapped to a variant, and the number

carrying the minor allele, to calculate a score statistic at each position in a gene (or window) of interest, thus providing an

assessment of the effect of each individual variant on the disease phenotype. A burden statistic is then calculated for each

window as the sum of the score statistics for each of the variants within that window, allowing identification of windows that

have a higher or lower accumulation of rare variants in the cases than might be expected, compared to controls. This procedure

therefore effectively looks for windows containing clusters of rare variants seen in different affected individuals (and not seen -

or at least not at comparable frequencies - in controls).
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Gene expression in Normal Human Urothelial (NHU) cells

Data on gene expression by in vitro-propagated cultures of Normal Human Urothelial (NHU) cells were obtained from Fishwick

et al. (2017)49 for the genes in the implicated chromosome 10q26 region (Supplementary Table 1). Transcript expression was

measured via RNA-seq. NHU cells were maintained as finite, serially-passaged cell lines in keratinocyte serum-free medium

containing bovine pituitary extract and epidermal growth factor and supplemented with 30 ng/ml cholera toxin. Results were

obtained for non-differentiated (vehicle control 0.1% DMSO) cultures in proliferating (24h) and quiescent, contact-inhibited

(144h) states and at parallel time-points (24h and 144h) following induction of differentiation. Differentiation was induced

using 1 µM troglitazone (TZ) as PPARγ ligand with concurrent 1 µM PD153035 to block epidermal growth factor receptor

activation. Change in expression of MK167 was used as marker of cell cycle activity.

Data Availability

The data sets analysed and full sets of results obtained during the current study are available from the corresponding author on

reasonable request.
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Figure legends

Figure 1. Results from parametric linkage (HLOD) analysis under a dominant model and non-parametric linkage analysis

(ZLRLOD) using combined populations. The x axis and alternating colors indicate alternating chromosomes. A dashed line is

shown at an HLOD or ZLRLOD threshold of 3.

Figure 2. Results from parametric linkage (HLOD) analysis under a dominant model carried out separately within the

separate populations. The x axis and alternating colors indicate alternating chromosomes. A dashed line is shown at an HLOD

threshold of 3.

Figure 3. Close-up of the chromosome 10 region displaying the strongest evidence of linkage. (a) Results from parametric

linkage (HLOD) analysis under a dominant model, (b) LocusZoom plot (GRCh37 positions) of the -log base 10 of the HLOD

equivalent P value in the smaller (10Mb ≈ 27cM) region (shown within the red dashed lines on panel a) centred around the top

SNP, rs7907300. Genes in this region are shown below the plot; the 4 omitted genes all lie to the left of GPR26 and thus

outside the main region of significance.
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Figure 4. Transcript expression by in vitro-propagated cultures of Normal Human Urothelial (NHU) cells mapped to position

along chromosome 10q26 (GRCh38 assembly); non-expressed (RPKM ≤ 1 in Control 24h) genes not shown. Data from

RNA-seq expressed as Reads Per Kilobase of transcript per Million mapped reads (RPKM), with each bar representing the

mean (± sd) from three independent donor cell lines, as detailed in Fishwick et al. (2017).
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