13 research outputs found

    The effect of compaction pressure, sintering time, and temperature on the characterization of an aluminum/alumina composite with rising alumina proportions

    Get PDF
    The purpose of this article is to investigate the effect of various process parameters such as compaction pressure, sintering temperature, and time on the physio-mechanical properties of a powder metallurgy-fabricated composite made of pure aluminium/alumina. Temperatures (580°C, 600°C, and 630°C), periods (1.5, 2, and 2.5 hr), compacting loads (30KN-65KN), and alumina percentages (2, 4, 6, and 8weight percent) are all considered. X-ray diffraction (XRD) and X-ray fluorescence spectroscopy (XRF) studies are carried out to determine the phases present and their proportions. Crystallite size study is performed using XRD data, and the Al+4 weight % alumina composite has the smallest size of any composite tested. For optimization, sintering density, porosity, and microhardness are calculated. Scanning electron microscopy (SEM) is used to analyse the different microstructures. At 600°C, 2 hr of operating time, and 4weight% alumina additions, the highest sintering density and microhardness are found

    Nations within a nation: variations in epidemiological transition across the states of India, 1990–2016 in the Global Burden of Disease Study

    Get PDF
    18% of the world's population lives in India, and many states of India have populations similar to those of large countries. Action to effectively improve population health in India requires availability of reliable and comprehensive state-level estimates of disease burden and risk factors over time. Such comprehensive estimates have not been available so far for all major diseases and risk factors. Thus, we aimed to estimate the disease burden and risk factors in every state of India as part of the Global Burden of Disease (GBD) Study 2016

    OMCoRP: An Online Mechanism for Competitive Robot Prioritization

    No full text
    We propose a collision-avoiding mechanism for a group of robots moving on a shared workspace. Existing algorithms solve this problem either (a) in an offline manner using the source-destination information of all the robots or (b) in an online manner with cooperative robots. We take a paradigm shift to the setting with competitive robots, that may strategically reveal their urgency of reaching the destinations and design online mechanisms that take decisions on-the-fly, reducing the overhead of an offline planning. We propose a mechanism OMCoRP in this setting that ensures truthful revelation of the robots' priorities using principles of economic theory and provides locally efficient movement of the robots. It is free from collisions and deadlocks, and handles dynamic arrival of robots. In practice, this mechanism gives a smaller delay for robots of higher priority and scales well for a large number of robots without compromising on the path optimality too much

    Effect of Different Chemical Treatments on Surface Morphology, Thermal and Tensile Strength of Bauhinia Vahlii (BV) Stem Fibers

    No full text
    Appropriate surface modifications are required to enhance the compatibility of natural fibers with polymer matrix to develop eco-friendly composites. One of such novel plant fibers is Bauhinia vahlii (BV) stem fiber. The present work aims to analyze the potentiality of this fiber as reinforcement to substitute synthetic fibers in composites. To enhance the properties of natural fibers, various chemical treatments like alkaline, peroxide, maleic anhydride and acrylation were conducted on BV fibers. Scanning electron microscope (SEM) and Fourier transform infrared spectroscopy (FTIR) were conducted to inspect the effects of chemical treatment on the morphology and composition of fibers, respectively. The crystallinity indices were calculated from X-ray diffraction (XRD) analysis. The improved tensile strength of the fiber after chemical treatment decides its usability as reinforcement in composites. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) were also conducted on treated fiber to investigate its thermal stability

    The Health Risk and Source Assessment of Polycyclic Aromatic Hydrocarbons (PAHs) in the Soil of Industrial Cities in India

    No full text
    Industrial areas play an important role in the urban ecosystem. Industrial site environmental quality is linked to human health. Soil samples from two different cities in India, Jamshedpur and Amravati, were collected and analyzed to assess the sources of polycyclic aromatic hydrocarbons (PAHs) in industrial areas and their potential health risks. The total concentration of 16 PAHs in JSR (Jamshedpur) varied from 1662.90 to 10,879.20 ng/g, whereas the concentration ranged from 1456.22 to 5403.45 ng/g in the soil of AMT (Amravati). The PAHs in the samples were dominated by four-ring PAHs, followed by five-ring PAHs, and a small percentage of two-ring PAHs. The ILCR (incremental lifetime cancer risk) of the soil of Amravati was lower compared to that of Jamshedpur. The risk due to PAH exposure for children and adults was reported to be in the order of ingestion > dermal contact > inhalation while for adolescents it was dermal contact > ingestion > inhalation in Jamshedpur. In contrast, in the soil of Amravati, the PAH exposure path risk for children and adolescents were the same and showed the following order: dermal contact > ingestion > inhalation while for the adulthood age group, the order was ingestion > dermal contact > inhalation. The diagnostic ratio approach was used to assess the sources of PAHs in various environmental media. The PAH sources were mainly dominated by coal and petroleum/oil combustion. As both the study areas belong to industrial sites, the significant sources were industrial emissions, followed by traffic emissions, coal combustion for domestic livelihood, as well as due to the geographical location of the sampling sites. The results of this investigation provide novel information for contamination evaluation and human health risk assessment in PAH-contaminated sites in India

    Not Available

    No full text
    Not AvailableRice is the most important food crop worldwide and sustainable rice production is important for ensuring global food security. Biotic stresses limit rice production significantly and among them, bacterial blight (BB) disease caused by Xanthomonas oryzae pv. oryzae (Xoo) is very important. BB reduces rice yields severely in the highly productive irrigated and rainfed lowland ecosystems and in recent years; the disease is spreading fast to other rice growing ecosystems as well. Being a vascular pathogen, Xoo interferes with a range of physiological and biochemical exchange processes in rice. The response of rice to Xoo involves specific interactions between resistance (R) genes of rice and avirulence (Avr) genes of Xoo, covering most of the resistance genes except the recessive ones. The genetic basis of resistance to BB in rice has been studied intensively, and at least 44 genes conferring resistance to BB have been identified, and many resistant rice cultivars and hybrids have been developed and released worldwide. However, the existence and emergence of new virulent isolates of Xoo in the realm of a rapidly changing climate necessitates identification of novel broad-spectrum resistance genes and intensification of gene-deployment strategies. This review discusses about the origin and occurrence of BB in rice, interactions between Xoo and rice, the important roles of resistance genes in plant’s defense response, the contribution of rice resistance genes toward development of disease resistance varieties, identification and characterization of novel, and broad-spectrum BB resistance genes from wild species of Oryza and also presents a perspective on potential strategies to achieve the goal of sustainable disease management.Not Availabl

    Evolution of microgrids with converter-interfaced generations: Challenges and opportunities

    No full text
    corecore