315 research outputs found

    Economical Analysis of Flexibility in Micro Grids

    Get PDF
    International audienceAs energy demand increased and production means diversified, conventional approaches of looking into distri- bution grids need to evolve. The Smart Grid paradigm introduces new possibilities of real-time market sensing and interaction models between producers and consumers. In particular, by understanding the types of con- sumers and their potential willingness to adapt their energy demand with price incentives, innovative pricing strategies in the Smart Grid are expected to lead to better production management, profit maximization and end consumers satisfaction levels. In this work we propose a novel framework and a simulation scenario of a global energy network with heterogeneous types of producers and consumers from which different types of behaviors and interactions can be studied

    Evolution du gisement de flexibilité : une approche options réelles

    No full text
    International audienceLa théorie d'options réelles (OR) est un outil d'aide à la décision en matière d'investissement. Elle offre une gestion active d'un projet, et permet d'identifier la valeur de la flexibilité pour faire face aux incertitudes dans laquelle évolue un projet. Le modèle d'incertitude sur l'évolution du gisement de flexibilité proposé dans cet article s'inscrit dans le cadre du projet GreenLys. L'objectif de ce modèle est de favoriser le déploiement du pilotage de charge. L'aide à la prise de décision concernant les investissements est réalisée grâce à la théorie d'options réelles qui repose sur un ensemble de paramètres d'incertitudes et une flexibilité managériale

    Analysing the interactions between Variable Renewable Energies, electricity storage and grid in long term energy modelling tools

    No full text
    International audienceEnergy systems are changing worldwide: new energy policies promote more sustainable energy productions, including Variable Renewable Energy sources (VREs) such as wind or solar. The long-term implications of the variability and relative unpredictability of these non dispatchable energy sources need to be assessed, for example with energy scenarios. Indeed, electricity is not a homogeneous good: its value depends on the time, space and how variable a production is. Long-term energy models are used, VREs integration challenges being a hot topic in energy modelling. An assessment of long-term energy models is necessary to understand how they represent the specific constraints of VREs on the rest of the power system. Therefore a new typology is proposed for comparing both long-term energy models and power sector models. This comparison shows that – despite all the recent modelling efforts – no long-term energy model represents in detail all the impacts of VREs on the power sector. For example, the sequential representation of the electricity storage operation is too precise for many long-term models. Therefore we develop a dedicated new power sector module, EUCAD (European Unit Commitment And Dispatch). The particularity of the work is that it is connected to POLES (Prospective Outlook on Long-term Energy Systems), one of the most technology-detailed long-term energy models. We present the first results of this new detailed electricity module

    Analysing the interactions between Variable Renewable Energies, electricity storage and grid in long term energy modelling tools

    Get PDF
    International audienceEnergy systems are changing worldwide: new energy policies promote more sustainable energy productions, including Variable Renewable Energy sources (VREs) such as wind or solar. The long-term implications of the variability and relative unpredictability of these non dispatchable energy sources need to be assessed, for example with energy scenarios. Indeed, electricity is not a homogeneous good: its value depends on the time, space and how variable a production is. Long-term energy models are used, VREs integration challenges being a hot topic in energy modelling. An assessment of long-term energy models is necessary to understand how they represent the specific constraints of VREs on the rest of the power system. Therefore a new typology is proposed for comparing both long-term energy models and power sector models. This comparison shows that – despite all the recent modelling efforts – no long-term energy model represents in detail all the impacts of VREs on the power sector. For example, the sequential representation of the electricity storage operation is too precise for many long-term models. Therefore we develop a dedicated new power sector module, EUCAD (European Unit Commitment And Dispatch). The particularity of the work is that it is connected to POLES (Prospective Outlook on Long-term Energy Systems), one of the most technology-detailed long-term energy models. We present the first results of this new detailed electricity module

    Economical Analysis of Flexibility in Micro Grids

    No full text
    International audienceAs energy demand increased and production means diversified, conventional approaches of looking into distri- bution grids need to evolve. The Smart Grid paradigm introduces new possibilities of real-time market sensing and interaction models between producers and consumers. In particular, by understanding the types of con- sumers and their potential willingness to adapt their energy demand with price incentives, innovative pricing strategies in the Smart Grid are expected to lead to better production management, profit maximization and end consumers satisfaction levels. In this work we propose a novel framework and a simulation scenario of a global energy network with heterogeneous types of producers and consumers from which different types of behaviors and interactions can be studied

    Advances in smart grids - benefits on sharing background experiences from Portugal, Central Europe and Brazil

    Get PDF
    This paper presents ELECON - Electricity Consumption Analysis to Promote Energy Efficiency Considering Demand Response and Non-technical Losses, an international research project that involves European and Brazilian partners. ELECON focuses on energy efficiency increasing through consumer´s active participation which is a key area for Europe and Brazil cooperation. The project aims at significantly contributing towards the successful implementation of smart grids, focussing on the use of new methods that allow the efficient use of distributed energy resources, namely distributed generation, storage and demand response. ELECON puts together researchers from seven European and Brazilian partners, with consolidated research background and evidencing complementary competences. ELECON involves institutions of 3 European countries (Portugal, Germany, and France) and 4 Brazilian institutions. The complementary background and experience of the European and Brazilian partners is of main relevance to ensure the capacities required to achieve the proposed goals. In fact, the European Union (EU) and Brazil have very different resources and approaches in what concerns this area. Having huge hydro and fossil resources, Brazil has not been putting emphasis on distributed renewable based electricity generation. On the contrary, EU has been doing huge investments in this area, taking into account environmental concerns and also the economic EU external dependence dictated by huge requirements of energy related products imports. Sharing these different backgrounds allows the project team to propose new methodologies able to efficiently address the new challenges of smart grids

    Voltage Control in Low-Voltage Grids Using Distributed Photovoltaic Converters and Centralized Devices

    Get PDF
    This paper studies the application of distributed and centralized solutions for voltage control in low voltage (LV) grids with high photovoltaic (PV) penetration. In traditional LV grids, the coordination of distributed PV converters and a centralized device would require massive investments in new communication and control infrastructures. The alternative of exploiting distributed PV converters for voltage control is discussed, showing that it can help to stabilize the voltage in the grid connection points also without coordination between them and/or with a centralized unit. The goal of this paper is to investigate how the setup of the voltage controllers inside PV inverters affects the operation of these controllers taking into account the limits for reactive power injection. In addition, the interaction of distributed PV converters with centralized devices (static var compensators and on load tap changers) is analyzed to assess whether additional benefits may come in these cases

    The Significance of Energy Storage for Renewable Energy Generation and the Role of Instrumentation and Measurement

    Get PDF
    International audienceEnergy storage is not a new concept but is currently getting increasing importance in the context of energy transition paradigm. Indeed, it is expected to play a key role as an enabling technology for lowering the carbon footprint of the electric power system. In fact, the growing development of renewable energy resources and their increasing share in the energy mix, are introducing significant challenges to the existing power grid due to the high variability of these sources/loads. In particular, maintaining the generation-consumption balance of the electric power in real time, as well as the overall power system security, when these special energy sources/loads are present at a significant scale is a major concern. With competitive energy storage, it will be possible to introduce more flexibility in the electrical system thus helping it to better manage the overall energy balance with better system response in case of severe contingencies. Energy storage technologies were historically used for managing the load curve while observing generation dynamic constraints. The most well-known storage technology is the pumped hydro storage where the energy is stored in a hydraulic form (water potential energy). With the event of open access and the corresponding unbundling of electric power industry segments, valorizing energy storage options under market conditions has become tricky. The major present barriers for deploying energy storage systems (ESS) are high cost, competitive economic value, efficiency and energy density, together with energy policies. The new energy paradigm has put a new emphasis on energy storage, and many research roadmaps have pointed out the need for overcoming the current barriers. The decision makers' awareness of the importance of energy storage is also on the rise. However, adequate incentives for encouraging massive deployment of ESS and storage technology within the electric power system are still lacking. Currently, most of the effort is dedicated to in situ demonstration projects in striving for smarter grids and support of innovations with the corresponding proofs of concept and feedback experience. Additionally, different grid applications are assessed for both centralized to decentralized uses. Various energy storage applications for frequency regulation, voltage support, investment optimization, or peak shaving are under consideration. In this article, some of the main energy storage technologies will be reviewed according to their main application domains. That will be followed by a focus on battery energy storage. Some key elements of battery management system (BMS) technologies and ESS architecture and characterization will be addressed. Then some aspects of ESS protection will be presented and the key trends and indications of emerging concepts for energy storage will be identified

    Quelle R&D Mener pour le Développement Des Réseaux D'énergie De Demain ? Les Propositions de L'ancre en 2015

    Get PDF
    Feuille de route sur les réseaux électriques et stockage élaborée par le GP10 Réseaux et Stockages de l'Energie de l'ANCRECette feuille de route concerne les réseaux d’énergie électrique, de chaleur et de froid, les réseaux de gaz (hydrogène, gaz naturel), leurs stockages associés, ainsi que leurs couplages à venir dans le cadre de la transition énergétique et des évolutionsqui l’accompagneront, que ce soit sur les modes de production d’énergie ou sur l’évolution des usages.Le focus est porté sur les réseaux électriques qui seront les premiers impactés par cette transition énergétique. Hormisquelques éléments très spécifiques aux réseaux électriques (et qui seront notés dans le texte par une couleur différente)il est à souligner que la quasi-totalité des considérations et axes de R&D évoqués pour les réseauxélectriques et le développement de leur « intelligence » et/ou de leur flexibilité s’appliquentégalement aux autres réseaux d’énergie. Par ailleurs, si le groupe programmatique« Réseaux et Stockage » de l’ANCRE (GP10) s’est largement appuyé sur les nombreuses feuilles de route émises tant au niveau national, dont celles de l’ADEME, qu’européen, il a également souhaité s’en démarquer en insistantlargement et en détaillant les recherches scientifiques et technologiques à mener face aux verrous actuellement identifiés

    The transition towards a sustainable energy system in Europe: What role can North Africa's solar resources play?

    Get PDF
    Securing energy supply and speeding up the transition towards a reliable, sustainable, low-carbon energy system are among the major current and future challenges facing Europe. Importing dispatchable solar electricity from North Africa is considered as a potential and attractive option. Nevertheless, as things currently stand, the European Commission focuses mainly on the exploitation of the existing wind power potential in the North Sea, largely ignoring the solar power potential in the Sahara region of North Africa. After discussing the major challenges and issues facing Europe to achieve the assigned ambitious objectives, the paper emphasises the importance of North Africa's solar resources in helping Europe to successfully address the challenge of decarbonising its electricity system, in particular with regards to the security of supply and sustainability. Within these two major challenges, the paper explores the issues of access, barriers and opportunities. The paper highlights why the EU’s energy and climate goals will not be achievable without adequate grid expansion and grid-scale energy storage facilities, as well as other innovative measures to manage demand and ensure a secure energy supply. In this respect, the paper shows how the import of dispatchable electricity from North Africa via specific HVDC links could play a key role in helping the EU achieve its energy targets in a cost effective way without recourse to significant investments in transmission infrastructure and storage facilities. The paper then attempts to identify and analyze the main barriers that continue to inhibit the export of solar electricity from North Africa to Europe. Finally, to make the project more attractive and achievable in the near future, the paper proposes a systematic approach for setting up energy import scenarios. A promising import scenario is presented where energy import via Italy is shown to be a more viable and effective solution than via Spain.Peer reviewe
    corecore