138 research outputs found

    Overnight consolidation aids the transfer of statistical knowledge from the medial temporal lobe to the striatum

    Get PDF
    Sleep is important for abstraction of the underlying principles (or gist) which bind together conceptually related stimuli, but little is known about the neural correlates of this process. Here, we investigate this issue using overnight sleep monitoring and functional magnetic resonance imaging (fMRI). Participants were exposed to a statistically structured sequence of auditory tones then tested immediately for recognition of short sequences which conformed to the learned statistical pattern. Subsequently, after consolidation over either 30min or 24h, they performed a delayed test session in which brain activity was monitored with fMRI. Behaviorally, there was greater improvement across 24h than across 30min, and this was predicted by the amount of slow wave sleep (SWS) obtained. Functionally, we observed weaker parahippocampal responses and stronger striatal responses after sleep. Like the behavioral result, these differences in functional response were predicted by the amount of SWS obtained. Furthermore, connectivity between striatum and parahippocampus was weaker after sleep, whereas connectivity between putamen and planum temporale was stronger. Taken together, these findings suggest that abstraction is associated with a gradual shift from the hippocampal to the striatal memory system and that this may be mediated by SWS

    Nitro drugs for the treatment of trypanosomatid diseases:past, present, and future prospects

    Get PDF
    There is an urgent need for new, safer, and effective treatments for the diseases caused by the protozoan parasites Trypanosoma brucei, Trypanosoma cruzi, and Leishmania spp. In the search for more effective drugs to treat these ‘neglected diseases’ researchers have chosen to reassess the therapeutic value of nitroaromatic compounds. Previously avoided in drug discovery programs owing to potential toxicity issues, a nitro drug is now being used successfully as part of a combination therapy for human African trypanosomiasis. We describe here the rehabilitation of nitro drugs for the treatment of trypanosomatid diseases and discuss the future prospects for this compound class

    The effect of sleep on children’s word retention and generalization

    Get PDF
    In the first few years of life children spend a good proportion of time sleeping as well as acquiring the meanings of hundreds of words. There is now ample evidence of the effects of sleep on memory in adults and the number of studies demonstrating the effects of napping and nocturnal sleep in children is also mounting. In particular, sleep appears to benefit children's memory for recently-encountered novel words. The effect of sleep on children's generalization of novel words across multiple items, however, is less clear. Given that sleep is polyphasic in the early years, made up of multiple episodes, and children's word learning is gradual and strengthened slowly over time, it is highly plausible that sleep is a strong candidate in supporting children's memory for novel words. Importantly, it appears that when children sleep shortly after exposure to novel word-object pairs retention is better than if sleep is delayed, suggesting that napping plays a vital role in long-term word retention for young children. Word learning is a complex, challenging, and important part of development, thus the role that sleep plays in children's retention of novel words is worthy of attention. As such, ensuring children get sufficient good quality sleep and regular opportunities to nap may be critical for language acquisition

    Sleep-Related Hippocampo-Cortical Interplay during Emotional Memory Recollection

    Get PDF
    Emotional events are usually better remembered than neutral ones. This effect is mediated in part by a modulation of the hippocampus by the amygdala. Sleep plays a role in the consolidation of declarative memory. We examined the impact of sleep and lack of sleep on the consolidation of emotional (negative and positive) memories at the macroscopic systems level. Using functional MRI (fMRI), we compared the neural correlates of successful recollection by humans of emotional and neutral stimuli, 72 h after encoding, with or without total sleep deprivation during the first post-encoding night. In contrast to recollection of neutral and positive stimuli, which was deteriorated by sleep deprivation, similar recollection levels were achieved for negative stimuli in both groups. Successful recollection of emotional stimuli elicited larger responses in the hippocampus and various cortical areas, including the medial prefrontal cortex, in the sleep group than in the sleep deprived group. This effect was consistent across subjects for negative items but depended linearly on individual memory performance for positive items. In addition, the hippocampus and medial prefrontal cortex were functionally more connected during recollection of either negative or positive than neutral items, and more so in sleeping than in sleep-deprived subjects. In the sleep-deprived group, recollection of negative items elicited larger responses in the amygdala and an occipital area than in the sleep group. In contrast, no such difference in brain responses between groups was associated with recollection of positive stimuli. The results suggest that the emotional significance of memories influences their sleep-dependent systems-level consolidation. The recruitment of hippocampo-neocortical networks during recollection is enhanced after sleep and is hindered by sleep deprivation. After sleep deprivation, recollection of negative, potentially dangerous, memories recruits an alternate amygdalo-cortical network, which would keep track of emotional information despite sleep deprivation

    Brain Responses to Violet, Blue, and Green Monochromatic Light Exposures in Humans: Prominent Role of Blue Light and the Brainstem

    Get PDF
    BACKGROUND: Relatively long duration retinal light exposure elicits nonvisual responses in humans, including modulation of alertness and cognition. These responses are thought to be mediated in part by melanopsin-expressing retinal ganglion cells which are more sensitive to blue light than violet or green light. The contribution of the melanopsin system and the brain mechanisms involved in the establishment of such responses to light remain to be established. METHODOLOGY/PRINCIPAL FINDINGS: We exposed 15 participants to short duration (50 s) monochromatic violet (430 nm), blue (473 nm), and green (527 nm) light exposures of equal photon flux (10(13)ph/cm(2)/s) while they were performing a working memory task in fMRI. At light onset, blue light, as compared to green light, increased activity in the left hippocampus, left thalamus, and right amygdala. During the task, blue light, as compared to violet light, increased activity in the left middle frontal gyrus, left thalamus and a bilateral area of the brainstem consistent with activation of the locus coeruleus. CONCLUSION/SIGNIFICANCE: These results support a prominent contribution of melanopsin-expressing retinal ganglion cells to brain responses to light within the very first seconds of an exposure. The results also demonstrate the implication of the brainstem in mediating these responses in humans and speak for a broad involvement of light in the regulation of brain function

    Current and Future Prospects of Nitro-compounds as Drugs for Trypanosomiasis and Leishmaniasis

    Get PDF

    Sleep’s Role in Schema Learning and Creative Insights

    Get PDF
    Purpose of Review A recent resurgence of interest in schema theory has influenced research on sleep-dependent memory consolidation and led to a new understanding of how schemata might be activated during sleep and play a role in the reorganisation of memories. This review aims to synthesise recent findings into a coherent narrative and draw overall conclusions. Recent Findings Rapid consolidation of schematic memories has been shown to benefit from an interval containing sleep. These memories have shown reduced reliance on the hippocampus following consolidation in both humans and rodents. Using a variety of methodologies, notably including the DRM paradigm, it has been shown that activation of a schema can increase the rate of false memory as a result of activation of semantic associates during slow wave sleep (SWS). Memories making use of a schema have shown increased activity in the medial prefrontal cortex, which may reflect both the schematic activation itself and a cognitive control component selecting an appropriate schema to use. SWS seems to be involved in assimilation of new memories within existing semantic frameworks and in making memories more explicit, while REM sleep may be more associated with creating entirely novel associations while keeping memories implicit. Summary Sleep plays an important role in schematic memory consolidation, with more rapid consolidation, reduced hippocampal involvement and increased prefrontal involvement as the key characteristics. Both SWS and REM sleep may have a role to play
    • …
    corecore