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Abstract
Purpose of Review A recent resurgence of interest in schema theory has influenced research on sleep-dependent memory
consolidation and led to a new understanding of how schemata might be activated during sleep and play a role in the
reorganisation of memories. This review is aimed at synthesising recent findings into a coherent narrative and draw overall
conclusions.
Recent Findings Rapid consolidation of schematic memories has been shown to benefit from an interval containing sleep. These
memories have shown reduced reliance on the hippocampus following consolidation in both humans and rodents. Using a variety
of methodologies, notably including the DRM paradigm, it has been shown that activation of a schema can increase the rate of
false memory as a result of activation of semantic associates during slow wave sleep (SWS). Memories making use of a schema
have shown increased activity in the medial prefrontal cortex, which may reflect both the schematic activation itself and a
cognitive control component selecting an appropriate schema to use. SWS seems to be involved in assimilation of newmemories
within existing semantic frameworks and in making memories more explicit, while REM sleep may be more associated with
creating entirely novel associations while keeping memories implicit.
Summary Sleep plays an important role in schematic memory consolidation, with more rapid consolidation, reduced hippocam-
pal involvement, and increased prefrontal involvement as the key characteristics. Both SWS and REM sleep may have a role to
play.

Keywords Memory . Schema . Sleep . Hippocampus . mPFC . Creative thinking

Introduction

Over the past two decades, renewed research interest has un-
covered a wealth of evidence around the role of sleep in mem-
ory consolidation—the offline process bywhich memories are
stabilised, reorganised, and in some cases strengthened over
time [1•]. Models of consolidation, such as the multiple trace
model [2] and the active systems hypothesis [3], have been
adapted to account for the role of sleep [4]. However, not all

memories are made equal. The traditional subdivision be-
tween declarative and non-declarative memory systems [5]
has revealed differences in the way sleep processes these
memories and which stages of sleep are most closely in-
volved. More recently, the concept of the memory schema
has seen a resurgence of interest [6••] and this has raised the
question of just how schematic memories are reprocessed dur-
ing sleep.

Schema research, which can trace its origins back to the
early twentieth century [7], reached an initial peak of interest
in the early 1980s in the wake of the cognitive revolution in
psychology, with seminal works looking at schemata as the
building blocks of cognition [8], as a central focus of language
comprehension [9] and as episodic knowledge structures
[10•]. Following a somewhat quieter period, schemata became
the focus of renewed interest in the late 2000s, with the pub-
lication of an important study on schema learning and mem-
ory consolidation in rats [11••] and the subsequent controver-
sy over the nature of that consolidation [12, 13]. From early
on, it was identified that schemata play a key role in memory
reconstruction, which may not always be entirely accurate or
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faithful to the original memory trace, and that they themselves
are constantly open to modification from new insights [14].
Alongside the question of how sleep and schemata may work
together in consolidating memory is therefore the question of
sleep’s role in creative insight and the development of new
associations which may necessitate updating or revising a
schema. These questions have been the focus of a lot of re-
search in the last decade especially. Just 15 years ago, we
knew very little about how consolidation might act on mem-
ories that are facilitated by a schema. As recently as 10 years
ago—after the initial research findings in rats had suggested
more rapid consolidation of schema-conformant memories—
we did not know if this applied in humans, or the neural
substrate of this rapid action, or the role of sleep in this pro-
cess. In this review, we will outline the most salient findings
from recent research and highlight what is, and equally impor-
tantly what is not, known at the present time.

The concept of a schema has been redefined a number of
times throughout the last century of intermittent use. Different
researchers have emphasised different aspects depending on
their own particular research interest, notably Piaget’s [15]
introduction of the schema into developmental psychology,
Bartlett’s [14] emphasis on the adaptability of the schema,
and Mandler’s [10•] focus on the narrative structure of many
schemata. Ghosh and Gilboa [6••], reviewing the history of
schema research, have identified four features which they be-
lieve to be essential: (a) an associative network structure; (b)
development across multiple episodes; (c) lack of specific
unit/instance detail; (d) adaptability. Durrant et al. [16••]
emphasised two additional features in relation to how schemas
operate: (e) a schema is an existing cognitive structure (devel-
oped on the basis of experience) which is triggered/activated;
it is not created by the experience which invokes it; and (f) a
schema generally creates a set of expectations as to what will
subsequently be encountered. While these definitions are
helpful, it is clear that the concept of schema is rather nebulous
and open to shifts in emphasis and interpretation which may
hinder attempts to understand how the schema affects sleep-
dependent memory consolidation. This can be alleviated by
researchers clearly outlining their intended definition of a
schema when describing their research design. We therefore
adopt a definition of a schema here which emphasises four key
features:

1. A schema is an associative mental structure acquired on
the basis of experience. This experience is typically long-
term, ranging from days to years, and is derived from
many overlapping exemplars.

2. A schema is triggered by a specific context, but the con-
tent of the schema—once triggered—is independent of
the context. That is to say, a tonal music schema could
be triggered by a scale, a chord, or even a whole piece of
music, but the schema is the same for each type of trigger.

3. A schema creates a set of expectations. Entering a restau-
rant may trigger a restaurant schema, for example, which
may include an expectation of seeing tables with place
settings, being greeted by a waiter or handed a menu.
Seeing these items will not be surprising. Entering a
clothes shop will trigger a different schema; in that case,
being handed a menu would be highly surprising.

4. A schema facilitates rapid processing of new experiences
which trigger the schema. This could include earlier or
more complete integration into existing semantic net-
works, better retention of memories, or reduced suscepti-
bility to interference.

Sleep-Dependent Schematic Memory
Consolidation

A key aspect of schematic memory is a behavioural perfor-
mance benefit—memories that fit well within a schema are
remembered better than other memories. This benefit is true
not only for encoding or retrieval but also for sleep-dependent
consolidation, with evidence of more effective consolidation
on the first post-encoding night of schema-conformant items
leading to stronger recognition, but with no such benefit for
items which did not fit the schema [16••]. Similarly, individ-
uals who have a schema (such as for navigating 3D virtual
environments) showed a benefit of a nap while those without
such prior experience did not [17]; more generally, prior
knowledge of the domain seems to be essential for this type
of consolidation [18]. In language learning, both semantic
(meaning) and phonological (sound) information—which
may each have their own schema—have shown a benefit of
this schema across a night of sleep [19], with lexical compe-
tition research suggesting that phonology may consolidate
more rapidly [20], while integration into an existing semantic
network may be associated with sleep spindles [21] and slow
oscillations [22]. Semantic congruence may be enough to re-
cover from the detrimental effect of sleep deprivation at
encoding, with subsequent sleep showing stronger consolida-
tion of congruent items [23]. Rapid schematic consolidation
may at first appear to contradict the complementary learning
systems argument for the need for rapid hippocampal storage
followed by slower neocortical integration to avoid cata-
strophic interference [24]; however, recent simulations sug-
gest that schema-conformant memories can be rapidly inte-
grated within this framework [25•].

The Deese-Roediger-McDermott (DRM) task [26] has
been a particularly fruitful source of information about how
associative networks, which underpin schemata, are consoli-
dated during sleep. This involves presenting lists of words at
encoding which are semantically associated through a key-
word (the critical lure) which itself is not included in the list.
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At recall or recognition, memory for the words in the list, but
also false memory for the critical lure, is measured. The DRM
task has been used a number of times to test the effect of sleep-
dependent consolidation on veridical and false memory, with
results not always consistent. Sleep deprivation at retrieval
was shown to enhance false memories [27–29], an effect that
was abolished by caffeine [30], suggesting an adenosinergic
mechanism (due to the role of caffeine in blocking adenosine
receptors and temporarily reducing the effect of homeostatic
sleep pressure) and therefore also likely to be alleviated by
slowwave activity in normal sleep (which also targets homeo-
static sleep pressure). This is consistent with the finding that
slow wave sleep (SWS) can decrease false and even veridical
memories [31]. However, this study also found that sleeping
soon after learning enhanced veridical and false memories,
suggesting that sleep may also have a beneficial role for both
types of memory in some circumstances; this was also seen in
another DRM study where the memory benefit was associated
with stronger hippocampal activation at retrieval [32].
Similarly, Payne et al. [33] found a beneficial effect of sleep
for veridical and false memories, but that SWS was more
detrimental for veridical memories while preserving false
memories. This selective benefit for false memories after sleep
compared to wake was associated with spindles in the right
hemisphere [34], although spindles as a whole were seen to
reduce false memories in adolescent girls (but not boys) in
another study [35]. An explanation for these disparate results
is suggested by Diekelmann et al. [36•], who found enhanced
false recall after both sleep and sleep deprivation in compari-
son to daytime wake and suggested two mechanisms are at
work: (1) overnight reorganisation which can lead to an in-
crease in false memories; and (2) a cognitive control compo-
nent which is undermined by sleep deprivation. Both of these
will lead to an increase in false memories, the former through
activation of memory associates and the latter through subop-
timal schema activation or suppression. A meta-analysis of
DRM and sleep found that length of the word list (and there-
fore size of the associative network) and the choice of testing
methodology (recall vs recognition) can also make a differ-
ence [37].

The Neural Substrate of Schemata

Studies using the DRM paradigm and others looking at rapid
integration of semantic information when activating a schema
have focused on the role of SWS, which is considered the
most important for memory reorganisation [38]. Theoretical
models have also tended to focus on this, including the iOtA
model [39•] which describes how schema-conformant mem-
ories can be rapidly assimilated (incorporated into existing
networks) during SWS and how overlapping memories can
modify or even lead to the creation of new schemata. Ohki and

Takei [40] propose a theoretical model in which sleep spindles
and hippocampal ripples are involved in schema activation,
assimilation of new information, and accommodation (in
which the schema is modified), with these being coordinated
by delta oscillations. The hippocampus is important to sleep-
dependent memory consolidation [41] and evidence suggests
that hippocampal involvement in a memory trace decreases as
a result of consolidation and neocortical integration [42, 43].
In a seminal study in rats, Tse et al. [11••] demonstrated not
only that memories consolidated much more rapidly when
using a schema (for a learned environment) but also that hip-
pocampal involvement—necessary to initially develop a sche-
ma [44]—was much lower for such memories. Sleep was not
specifically investigated in that study, but in humans it has
been shown that an environmental schema can be developed
during sleep based on semantic regional information [45] and
that in an object-location task, once a schema has been devel-
oped, new associations are learned more effectively [46].
Importantly, the latter study also showed that while the hip-
pocampus was involved in learning new items, the medial
prefrontal cortex (mPFC) was activated only when the schema
was invoked.

The roles of the mPFC and the hippocampus during sleep
have been shown in a number of studies. Semantic assimila-
tion of new words, which benefits from sleep [47], was ac-
companied by greater activation in the neocortex for words
that had been learned the previous day and greater activation
in the hippocampus for novel words [48]. Strong evidence for
the specific role of the mPFC comes from a study in which
mice developed an environmental schema and demonstrated
this by showing sensitivity to information which conflicted
with this schema [49]. However, when the mPFC was
pharmacogenetically suppressed, this sensitivity to schema
violations was reduced, implicating the mPFC in schema ac-
tivation or regulation. Because of the evidence of
hippocampal-based reactivation during SWS, investigations
of schema processing during sleep have tended to focus on
SWS, but other stages of NREM sleep may also play a role. In
a face-location task, greater connectivity between the fusiform
gyrus and the mPFC during NREM sleep (stages 1 and 2) was
associated with consolidation of schematic memories subse-
quently better retrieved, while fusiform-hippocampal connec-
tivity (during NREM stage 1) was associated with better
encoding of new memories after sleep [50]. Neither SWS
nor REM sleep was measured in this study due to technical
limitations, so it is possible that they may also play a role, but
this study highlights a possible role for other sleep stages.

Given memory reactivation in the hippocampus during
SWS and the possible role of the mPFC in selecting and acti-
vating a schema to facilitate memory processing during sleep,
it is important to first elucidate the relationship between these
two structures in the context of schema theory in order to then
understand how sleep may govern that relationship. The
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possible roles of the mPFC and hippocampus have been de-
scribed in the SLIMM (schema-linked interactions between
medial prefrontal and medial temporal regions) model of van
Kesteren and colleagues [51••]. Essentially, this model pro-
poses that new memories which are congruent with an
existing schema will resonate and activate the mPFC, which
will in turn suppress the medial temporal lobe (MTL, includ-
ing the hippocampus). New memories which are incongruent
will not resonate, the mPFC will remain silent, and the MTL
will bind together the neocortical areas involved. In the case of
a partial match with an existing schema, both mPFC andMTL
activation may be seen; the extent to which the mPFC and
hippocampus cooperate or compete may depend on the extent
of the resonance therefore [52]. Related similar ideas have
been proposed by other researchers, including Preston et al.
[53] who have suggested that the hippocampus is involved in
cortical binding while the PFC is involved in creating,
selecting, or updating the schema, and Ghosh et al. [6••]
who have suggested that the mPFC is involved in selecting/
activating task-relevant schemata on a continuous basis.
Studies of patients with vmPFC damage show mixed effects;
on the one hand, patients who showed confabulation were
poorer at rejecting critical lures [54], suggesting a deficit of
the cognitive control component, while on the other hand,
healthy controls demonstrated more critical lures in the
DRM task [55], suggesting the active use of a schema. The
mPFC might thus be performing both functions outlined by
Diekelmann et al. [36•].

Evidence in support of this model comes from a variety
of studies. When interfering with a movie schema by scram-
bling the order of part of it, activation of the mPFCwas seen
for schema-related knowledge and more hippocampal in-
volvement for information difficult to integrate due to the
interference [56]. In tasks involving congruency (either
multisensory or object-scene visual pairs), with more con-
gruent stimuli believed to more strongly invoke a schema,
greater mPFC and less MTL involvement was seen at
encoding [57] and retrieval [58], while the benefit of a sche-
ma for associative memory was seen immediately after
encoding but for item memory was seen only after a consol-
idation interval (containing sleep and wake) [59]. Better
performance by 2nd-year biology undergraduates for facts
related rather than unrelated to their previous knowledge
was also directly associated with higher mPFC activation
and lower MTL activation at encoding [60]. Inhibiting acti-
vation in the mPFC prior to encoding through TMS might
be expected to inhibit schematic memory processing, and
indeed it was found to inhibit production of critical lures in
the DRM task, but not veridical memory, at immediate re-
trieval [61]. In an emotional false memory task following
mood induction, the same TMS inhibition had an impact on
negative false memory, but not veridical memory, the morn-
ing after an overnight consolidation interval [62].

This evidence all points to increased involvement of the
mPFC when a schema is used to help encoding or retrieval
together with a decreased role for the hippocampus. What
happens during consolidation, and in particular during sleep,
has been much less extensively investigated, but some studies
have directly examined this in humans. A fact learning task
leading to the development of new schemata prior to testing
schema-conformant vs non-conformant knowledge showed
that increased spindle density during sleep directly predicted
both schematic memory consolidation and the hippocampal
disengagement for those schematic memories in this task,
while other memories continued to involve the hippocampus
[63•].

REM Sleep and Slow Wave Sleep in Schematic
Memory Consolidation

The previous studies point to the role of NREM sleep—and
especially SWS—in schema activation and consolidation of
schema-conformant memories. Does REM sleep play any role
here? A DRM study using emotional as well as neutral words
found that both negative and neutral false words were en-
hanced by sleep [64]; sleep stages were not measured but
negative memory is generally considered enhanced by REM
sleep [65, 66]. Similarly, cueing words to be semantically
integrated during SWS suggested subsequent processing dur-
ing REM sleep [67]. More direct evidence comes from a study
utilising a strongly established pre-existing musical schema,
and stimuli that either matched or did not match this, which
showed the benefit of sleep when consolidating schema-
conformant items only [16••]. However, in this case, the sche-
ma benefit was associated with frontal and central theta power
during REM sleep; this finding suggests that mPFC involve-
ment may extend beyond SWS for certain types of memory,
although frontal theta power during SWS has also been seen
to benefit targeted memory reactivation when using a tonal
music schema [68]. The involvement of REM sleep in schema
processing suggests prefrontal activation during REM sleep.
Previous reports have suggested that dorsolateral prefrontal
activation may diminish during REM sleep [69]; however,
this does not apply specifically to the medial prefrontal cortex,
for which firing rates during REM sleep remain at a high level
[70], suggesting potential schema-related activation during
that sleep stage is plausible. Two animal studies are also in-
structive here. First, Arc and zif268 genes were shown to be
upregulated during associative pair learning in rats, and zif268
in particular was upregulated more strongly in the mPFC for
rats that were able to use a location schema. The expression of
immediate early genes including specifically zif268 is upreg-
ulated during REM sleep rather than NREM sleep and in
particular in response to prior experience while awake [71].
Furthermore, optogenetically suppressing the mPFC in mice
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led not only to reduced activation (and zif268 expression) in
the mPFC but also in the hippocampus during encoding, sug-
gesting that the mPFC may directly influence hippocampal
activation at encoding [72]. The mPFC may tag items for
consolidation using theta activation [73, 74], with evidence
from rats showing increased mPFC-hippocampal theta coher-
ence after learning and prefrontal reactivation during SWS
[75]. Connectivity between the mPFC and MTL is highly
attenuated during REM sleep, so schema-related hippocampal
suppression by the mPFC is likely to be specific to SWS [70].

Taken collectively, the evidence suggests that SWS and
REM may work together to reprocess schematic memories
offline during sleep, according to what was tagged during
encoding. The specific roles of REM and SWS remain to be
elucidated but some theoretical models have been proposed.
Landmann and colleagues [76•, 77] have suggested that SWS
is specifically involved in schema formation and integration of
new memories, while schema disintegration (in order to re-
structure them) takes place during REM sleep. A recent study
of gist learning and visual statistical learning provided some
tentative evidence in support of the latter proposition, but this
remains in need of confirmation [78]. A related idea is that
SWS may take the lead in stabilising memories while REM
sleep is primarily concerned with creatively reorganising them
[79]. The key mechanisms through which this may occur are
hippocampal input to the neocortex and reactivation during
SWS, meaning that gist abstraction of essential overlapping
elements takes place during SWS, while during REM sleep,
random activation triggered by PGO waves combined with
high levels of acetylcholine encourages the formation of
new connections (conceptually and synaptically) [80•].

Creative Thinking and Sleep

These suggested roles put REM sleep at the centre of creative
and inductive thinking, where “creativity involves forming
associative elements in new combinations by providing medi-
ating connective links” (Mednick, [81]; 226). Creative think-
ing is essential for problem-solving and the potential role of
sleep has attracted the attention of a number of researchers
(see Table 1 for a summary of recent findings). An early dem-
onstration using an anagram task showed that participants
woken during REM rather than NREM sleep were better suit-
ed to solving the task when asked to do so immediately [82].
Performance on the Remote Associates Task (RAT)—a com-
mon measure of creative thinking—has also shown a benefit
of REM sleep [83], and in one study both REM and NREM
sleep [84], especially for difficult problems [85]. As well as
being strongly predicted by the amount of REM sleep, auto-
nomic arousal—measured by heart rate variability and stron-
gest during REM sleep—is also a good predictor of RAT
performance [86]. The breadth of association for emotional

words primed in advance similarly benefits from REM sleep
[87] and REM sleep may also benefit creative problem-
solving if metacognitive knowledge (concerning how to go
about the task) is given in advance [88]. Interestingly, individ-
uals with narcolepsy—who obtain more and earlier REM
sleep—have shown a stronger creative profile compared to
healthy controls when evaluated with the Test of Creative
Profile and the Creativity Achievement Questionnaire and
when creative performance was measured using the
Evaluation of Potential Creativity test battery [89].
Furthermore, symptoms of narcolepsy associated with the in-
crease in REM sleep (including more sleep paralysis, more
lucid dreaming andmore REM sleep behaviour disorder) were
associated with higher creativity scores.

However, not all of the available evidence fits with this
theory. Using the Abbreviated Torrance Test for Adults to
measure creative thinking, NREM was found to be associated
with both originality and figural creativity [90] and SWS spe-
cifically seemed to benefit problem-solving in a video game
task [91]. Sleep of any form was not seen to benefit perfor-
mance in the Compound Remote Associates task [92] where it
strengthened only veridical memory. Research using reactiva-
tion has been similarly ambivalent, with creative problem-
solving in the Unusual Uses Task benefitting from covert
odour-based reactivation throughout the night [93], while cre-
ative puzzle-solving showed a benefit when reactivated by
playing an associated sound during SWS [94].

The SWS benefit for creative puzzle-solving is also
seen in the Number Reduction Task (NRT). A seminal
paper from Wagner and colleagues [[95•]; see also [96,
97] for further commentary] showed that the hidden rule
embedded in the NRT was discovered by around 60% of
participants in a post-sleep session after first learning the
task before sleep, compared to around 20% after an equiv-
alent wake period or engaging in their first session in
either the morning or the evening. This demonstrates both
that sleep may play a role in insight based on inductive/
creative thinking and that prior exposure is necessary for
this to take place post-sleep. A subsequent study revealed
that implicit knowledge of the hidden rule is more likely to
become explicit after SWS, while insight is equally likely
to develop after either SWS- or REM-rich sleep [98], sug-
gesting that REM sleep may be associated with enhance-
ment of knowledge that remains implicit [99]. The transfer
from implicit to explicit knowledge during SWS is associ-
ated with alpha power (8–12 Hz) [100] and topographic
reorganisation of slow cortical potentials involving the
hippocampus [101]. It is perhaps notable that older adults,
with significantly less SWS [102], do not show the same
benefit of sleep on the NRT as younger adults [103].

Transfer from implicit to explicit knowledge also occurs
in the Serial Reaction Time Task (SRTT) following a period
of sleep [104•], something which may be dependent on
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hippocampal involvement [41] and related to NREM spin-
dles [105] but forwhich explicit instructionof thepresenceof
a sequence is not necessary [106]. Children have more SWS
than adults and sure enough this post-sleep explicit aware-
ness is seen more strongly in children [107]. Post-sleep ex-
plicit knowledge of information learned implicitly across
multiple trials is also seen in the Iowa Gambling task [108]
and a semantic coherence task [109]. The benefit of SWS for
abstracting underlying probabilities across trials is also seen
in statistical learning [110] and associated with a decrease in
hippocampal involvement over time [111, 112], although
externally cued reactivation during SWS may interfere with
this [113]. Explicit awareness of sequence fragments could
occur during statistical learning andwould explain the role of
SWS. By contrast, the probabilities learned in the weather
prediction task are likely to remain implicit and REM sleep
has been implicated in this task [114]. Underlying grammat-
ical rule abstraction similarly benefits from sleep in both
adults [115•] and children [116, 117] and may benefit from
SWS in particular [118].

Conclusions

The research described in this review is a broad body of work
focused on schematic memory processing and the crucial role of
sleep in this. It is apparent that while not all research findings are
in complete agreement, there are some clear trends in the findings
and an overall broadly coherent narrative considering the com-
plex and diverse nature of schemata and the wide variety of
techniques used to probe schematic memory processing during
sleep. This allows us to draw a number of key conclusions:

1. Memories which trigger a schema are generally remem-
bered better and consolidated quicker.

2. A schema will involve additional associates being activat-
ed and may result in an increase in false memory.

3. Cognitive control of schema selection and the activation
of the schema itself are two distinct processes, both likely
to involve the mPFC. The former is undermined by pre-
encoding sleep deprivation while the latter benefits from
post-encoding sleep.

Table 1 Tasks measuring creative thinking or the development of new explicit awareness and the reported role of sleep

Source Task Sleep benefit

Walker et al. (2002) [1] Anagram Task REM sleep

Cai et al. (2009) [2] Remote Associates Task REM sleep

Carlsson, Davidson, andOrs (2019) [3] Remote Associates Task REM and NREM sleep

Sio, Monaghan, and Ormerod (2013)
[4]

Remote Associates Task Sleep (stage not measured)

Whitehurst et al. (2016) [5] Remote Associates Task REM sleep

Carr and Nielsen (2015) [6••] Emotional Word Association REM sleep

Brand et al. (2010) [7] Metacognitive knowledge used in the Tower of Hanoi,
Hobbits and Orcs problem, and Katona Card problem

REM sleep

Lacaux et al. (2019) [8] Test of Creative Profile and the Creativity Achievement
Questionnaire

REM sleep (not measured, but implied by narcolepsy
REM characteristics)

Drago et al. (2011) [9] Abbreviated Torrance Test NREM stage 1 and SWS

Beijamini et al. (2014) [10•] Speedy Eggbert Mania® video game SWS

Landmann et al. (2016) [11••] Compound Remote Associate task None

Ritter et al. (2012) [12] Unusual Uses Task Sleep (odour-based reactivation throughout sleep)

Sanders et al. (2019) [13] Rebus, matchstick, spatial, and verbal puzzles SWS (sound-based reactivation)

Wagner et al. (2004); Yordanova et al.
(2008, 2009, 2012) [14, 15, 16••, 17]

Number Reduction Task SWS (for insight to become explicit); SWS and
REM sleep (for insight to develop but remain
implicit)

Debarnot et al. (2017) [18] Number Reduction Task in older adults None

Fischer at al (2006) [19] Serial Reaction Time Task Generation Task Sleep (but no associations found with any particular
stage)

Yordanova et al. (2017) [20] Serial Reaction Time Task
Generation Task

Right hemisphere spindles in NREM Stage 2 and
SWS

Drosopoulos, Harrer and Born (2011)
[21]

Serial Reaction Time Task Generation Task Sleep (vs deprivation; stage not measured)

Wilhelm et al. (2013) [22] Serial Reaction Time Task Generation Task in adults
and children

Slow wave activity during NREM sleep

Pace-Schott et al. (2012) [23] Explicit knowledge in the Iowa Gambling Task Sleep (stage not measured)

Zander et al. (2017) [24] Semantic Coherence Task Sleep (stage measured but no associations reported)
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4. Whereamemoryis integratedrapidlyintoaschemaorexisting
semantic network, hippocampal involvement will decrease in
proportion to the schema involvement andspeedof consolida-
tion. The hippocampus may be directly suppressed by the

mPFC toprevent it from reactivating and reorganisingmemo-
ries which already fit into an existing framework.

5. Schema activation and assimilation of a new memory
within an existing schema seem most likely to happen

Fig. 1 New memory reactivation, schema usage and behavioural consequences in the context of (A) SWS and (B) REM sleep. See text for details
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during SWS, though more evidence is needed for this and
REM sleep may also play a role.

6. Schematic accommodation—where a schema is signifi-
cantly modified to account for a new memory—may in-
volve both SWS to modify existing connections where
necessary and REM sleep to incorporate new connections
to previously unrelated knowledge.

7. Creative thinking—forming of new associations—may
benefit from SWS where significant existing knowledge
is required for the activity or may benefit from REM sleep
where novelty is required. Most likely, cycles involving
both SWS (to activate existing associated knowledge) and
REM sleep (to allow encourage formation of new and
relatively distantly related associations) may be needed.

8. SWS is important for making implicit knowledge explicit,
while REM sleep may be important for consolidating im-
plicit knowledge while keeping it implicit.

Some of these findings are drawn together and illustrated in
Fig. 1:

A. In Panel A, a new memory (red) is initially reactivated by
the hippocampus (yellow) during SWS. This memory
resonates (blue dashed surrounding line) with an existing
schema, and this resonance is monitored (blue dashed
straight line) by the prefrontal schema control component
(dark purple) which fully activates the schema (light pur-
ple) and also suppresses the hippocampus. Part of that
schema overlaps with the memory (purple circles with
red edges) and part of it does not (purple circles with
green edges). The part that does not overlap but which
is activated anyway may appear as false memory in sub-
sequent recall. The increased activation of associates may
lead to insight based on prior experience and the initial
hippocampal involvement could allow this insight to be-
come an explicit memory.

B. In Panel B, a new memory (red) is reactivated during
REM sleep. Similar to SWS, this memory may again
resonate (blue dashed surrounding line) with an existing
schema which is then fully activated by the schema con-
trol component (dark purple). At the same time, PGO
waves cause the activation of a less closely related or
even entirely unrelated memory (green). The coincident
activation of the two together with early gene expression
encouraging plasticity causes new and perhaps unexpect-
ed connections to be formed (green dashed lines) between
the new memory and the old one, leading to creative
thinking and new associations. The reactivation also
strengthens the new memory and binds it to the schema,
but in the absence of medial temporal lobe activation, this
leads to stronger implicit memory performance rather
than becoming explicit.

These conclusions represent our best understanding given
the existing evidence to date. We know much more than we
did 10 years ago: in the last decade, we have established that
rapid consolidation of schema-conformant memories occurs
in humans that it involves greater activation in the mPFC and
reduced activation in the hippocampus and that both SWS and
REM sleep may have a role to play in this process. However,
more evidence is still needed in all of these areas. Existing
studies tend to be based on small samples, using different
methodologies, different participants, different paradigms of
sleep manipulation and monitoring, and different forms of
data analysis, yielding results which do not always sit easily
together. Patterns are starting to emerge and we are beginning
to understand the important role of schemata in memory pro-
cessing and how sleep is involved in this, but a lot remains to
be discovered about the specific neurobiological mechanisms
involved, the circumstances in which different aspects of sleep
are involved, and how these relate to specific behavioural
outcomes. This field remains open and active.
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