29 research outputs found

    Zoneamento agroecológico do Estado do Rio de Janeiro - ano 2003.

    Get PDF
    O objetivo geral do Zoneamento Agroecológico do estado compreende o fornecimento de subsídios técnicos para a execução de políticas públicas para fixar o homem ao campo, de forma econômica e ecologicamente viável, buscando o desenvolvimento sustentável do território fluminense. Apesar da pequena extensão territorial, compreendendo 43.797,5 km2, o estado do Rio de Janeiro apresenta uma grande diversidade ambiental, tanto em termos do meio físico e biótico, quanto sob os aspectos socioeconômicos. A grande variedade de solos que ocorre no estado, é um reflexo dessa diversidade, em especial quanto ao material de origem, relevo, vegetação e clima. Os principais indicadores considerados na elaboração do Zoneamento Agroecológico foram a vulnerabilidade das terras, o potencial de produção agrícola sustentável e a legislação ambiental vigente. As áreas de Proteção Ambiental são constituídas por: Unidades de Conservação da Natureza, remanescentes da Mata Atlântica, dunas, mangues, escarpas e afloramentos de rocha; as áreas indicadas para Atividades Agrícolas compreendem aquelas de produção agrícola intensiva, produção agrícola semi-intensiva, lavouras especiais (perenes, anuais e hortaliças), pastagens e reflorestamento; e as áreas indicadas para Recuperação Ambiental, constituem as terras desmatadas de elevada vulnerabilidade e/ou inaptas para atividades agrícolas, planícies fluviolagunares e áreas de mineração. O estado apresenta cerca de 35% da sua superfície localizada em áreas consideradas de Proteção Ambiental, 10% são indicadas para Recuperação Ambiental e 51% são adequadas para Atividades Agrícolas. Os terrenos mecanizáveis adequados para atividades agrícolas representam cerca de 21% da superfície. No entanto, as condições climáticas em geral são restritivas à produção agrícola, principalmente devido ao longo período de estiagem, de cerca de 4 a 6 meses, muitas vezes com ocorrência de veranicos no período das chuvas. Em vista disso, somente 4% da superfície do estado são de terras mecanizáveis ocorrendo em condições climáticas mais favoráveis para atividades agrícolas. Estas questões demonstram o quanto é importante a adoção da irrigação para a garantia da produção, tendo em vista que estes locais, embora com limitações variadas, em geral são adequados para irrigação, a depender da disponibilidade de água em volume e qualidade adequadas. As terras indicadas para lavouras perenes (unidade LP1), pastagens (unidade PA1) e reflorestamento (unidade RN), compreendendo cerca de 30% da superfície estadual. Ocorrem em relevo declivoso e estão sujeitas a acentuados processos erosivos, verificando-se elevados níveis de degradação em muitos locais, em especial no Norte-Noroeste Fluminense e Médio Vale do rio Paraíba do Sul. Tendo em vista a conjugação entre os parâmetros de solo, clima e as características ecológicas dos cultivos, foram indicadas para as áreas de Atividades Agrícolas: 102 culturas anuais e perenes, tanto em sequeiro como sob irrigação, referindo-se o método mais adequado, 90 espécies florestais e 37 gramíneas ou leguminosas forrageiras.bitstream/item/222016/1/bpd-33-2003-zoneamento-rj.zip; bitstream/item/162170/1/Zoneamento-RJ.PD

    Estimating the global conservation status of more than 15,000 Amazonian tree species

    Get PDF
    Estimates of extinction risk for Amazonian plant and animal species are rare and not often incorporated into land-use policy and conservation planning. We overlay spatial distribution models with historical and projected deforestation to show that at least 36% and up to 57% of all Amazonian tree species are likely to qualify as globally threatened under International Union for Conservation of Nature (IUCN) Red List criteria. If confirmed, these results would increase the number of threatened plant species on Earth by 22%. We show that the trends observed in Amazonia apply to trees throughout the tropics, and we predict thatmost of the world’s >40,000 tropical tree species now qualify as globally threatened. A gap analysis suggests that existing Amazonian protected areas and indigenous territories will protect viable populations of most threatened species if these areas suffer no further degradation, highlighting the key roles that protected areas, indigenous peoples, and improved governance can play in preventing large-scale extinctions in the tropics in this century

    Consistent patterns of common species across tropical tree communities

    Get PDF
    Trees structure the Earth’s most biodiverse ecosystem, tropical forests. The vast number of tree species presents a formidable challenge to understanding these forests, including their response to environmental change, as very little is known about most tropical tree species. A focus on the common species may circumvent this challenge. Here we investigate abundance patterns of common tree species using inventory data on 1,003,805 trees with trunk diameters of at least 10 cm across 1,568 locations1,2,3,4,5,6 in closed-canopy, structurally intact old-growth tropical forests in Africa, Amazonia and Southeast Asia. We estimate that 2.2%, 2.2% and 2.3% of species comprise 50% of the tropical trees in these regions, respectively. Extrapolating across all closed-canopy tropical forests, we estimate that just 1,053 species comprise half of Earth’s 800 billion tropical trees with trunk diameters of at least 10 cm. Despite differing biogeographic, climatic and anthropogenic histories7, we find notably consistent patterns of common species and species abundance distributions across the continents. This suggests that fundamental mechanisms of tree community assembly may apply to all tropical forests. Resampling analyses show that the most common species are likely to belong to a manageable list of known species, enabling targeted efforts to understand their ecology. Although they do not detract from the importance of rare species, our results open new opportunities to understand the world’s most diverse forests, including modelling their response to environmental change, by focusing on the common species that constitute the majority of their trees.Publisher PDFPeer reviewe

    Photography-based taxonomy is inadequate, unnecessary, and potentially harmful for biological sciences

    Get PDF
    The question whether taxonomic descriptions naming new animal species without type specimen(s) deposited in collections should be accepted for publication by scientific journals and allowed by the Code has already been discussed in Zootaxa (Dubois & Nemésio 2007; Donegan 2008, 2009; Nemésio 2009a–b; Dubois 2009; Gentile & Snell 2009; Minelli 2009; Cianferoni & Bartolozzi 2016; Amorim et al. 2016). This question was again raised in a letter supported by 35 signatories published in the journal Nature (Pape et al. 2016) on 15 September 2016. On 25 September 2016, the following rebuttal (strictly limited to 300 words as per the editorial rules of Nature) was submitted to Nature, which on 18 October 2016 refused to publish it. As we think this problem is a very important one for zoological taxonomy, this text is published here exactly as submitted to Nature, followed by the list of the 493 taxonomists and collection-based researchers who signed it in the short time span from 20 September to 6 October 2016

    Pervasive gaps in Amazonian ecological research

    Get PDF

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio
    corecore