365 research outputs found

    The molecular defect of albumin Tagliacozzo: 313 Lys ā†’ Asn

    Get PDF
    AbstractAlbumin Tagliacozzo is a fast-moving genetic variant of human serum albumin found in 19 unrelated families. The protein was isolated from the serum of a heterozygous healthy subject. Analysis of CNBr fragments by isoelectric focusing allowed us to localize the mutation to CNBr fragment IV (residues 299ā€“329). This fragment was isolated on a preparative scale and subjected to tryptic digestion. Sequential analysis of the abnormal tryptic peptide, purified by RP-HPLC, revealed the variant was caused by 313 Lys ā†’ Asn substitution, probably due to a point mutation in the structural gene. The lack of a lysine residue accounts for the electrophoretic behavior of albumin Tagliacozzo

    Visualizing the Needle in the Haystack: In Situ Hybridization With Fluorescent Dendrimers

    Get PDF
    In situ hybridization with 3DNAā„¢ dendrimers is a novel tool for detecting low levels of mRNA in tissue sections and whole embryos. Fluorescently labeled dendrimers were used to identify cells that express mRNA for the skeletal muscle transcription factor MyoD in the early chick embryo. A small population of MyoD mRNA positive cells was found in the epiblast prior to the initiation of gastrulation, two days earlier than previously detected using enzymatic or radiolabeled probes for mRNA. When isolated from the epiblast and placed in culture, the MyoD mRNA positive cells were able to differentiate into skeletal muscle cells. These results demonstrate that DNA dendrimers are sensitive and precise tools for identifying low levels of mRNA in single cells and tissues

    DNA Dendrimers Localize Myod mRNA in Presomitic Tissues of the Chick Embryo

    Get PDF
    MyoD expression is thought to be induced in somites in response to factors released by surrounding tissues; however, reverse transcription-PCR and cell culture analyses indicate that myogenic cells are present in the embryo before somite formation. Fluorescently labeled DNA dendrimers were used to identify MyoD expressing cells in presomitic tissues in vivo. Subpopulations of MyoD positive cells were found in the segmental plate, epiblast, mesoderm, and hypoblast. Directly after laying, the epiblast of the two layered embryo contained āˆ¼20 MyoD positive cells. These results demonstrate that dendrimers are precise and sensitive reagents for localizing low levels of mRNA in tissue sections and whole embryos, and that cells with myogenic potential are present in the embryo before the initiation of gastrulation

    High salt-induced excess reactive oxygen species production resulted in heart tube malformation during gastrulation

    Get PDF
    An association has been proved between high salt consumption and cardiovascular mortality. In vertebrates, the heart is the first functional organ to be formed. However, it is not clear whether highā€salt exposure has an adverse impact on cardiogenesis. Here we report highā€salt exposure inhibited basement membrane breakdown by affecting RhoA, thus disturbing the expression of Slug/Eā€cadherin/Nā€cadherin/Laminin and interfering with mesoderm formation during the epithelialā€mesenchymal transition(EMT). Furthermore, the DiI+ cell migration trajectory in vivo and scratch wound assays in vitro indicated that highā€salt exposure restricted cell migration of cardiac progenitors, which was caused by the weaker cytoskeleton structure and unaltered corresponding adhesion junctions at HH7. Besides, downā€regulation of GATA4/5/6, Nkx2.5, TBX5, and Mef2c and upā€regulation of Wnt3a/Ī²ā€catenin caused aberrant cardiomyocyte differentiation at HH7 and HH10. Highā€salt exposure also inhibited cell proliferation and promoted apoptosis. Most importantly, our study revealed that excessive reactive oxygen species(ROS)generated by high salt disturbed the expression of cardiacā€related genes, detrimentally affecting the above process including EMT, cell migration, differentiation, cell proliferation and apoptosis, which is the major cause of malformation of heart tubes

    Baicalin administration attenuates hyperglycemia-induced malformation of cardiovascular system

    Get PDF
    In this study, the effects of Baicalin on the hyperglycemia-induced cardiovascular malformation during embryo development were investigated. Using early chick embryos, an optimal concentration of Baicalin (6 Ī¼M), was identified which could prevent hyperglycemia-induced cardiovascular malformation of embryos. Hyperglycemia-enhanced cell apoptosis was reduced in embryos and HUVECs in the presence of Baicalin. Hyperglycemia-induced excessive ROS production was inhibited when Baicalin was administered. Analyses of SOD, GSH-Px, MAQE and GABAA suggested Baicalin plays an antioxidant role in chick embryos possibly through suppression of outwardly rectifying Cl(-) in the high-glucose microenvironment. In addition, hyperglycemia-enhanced autophagy fell in the presence of Baicalin, through affecting the ubiquitin of p62 and accelerating autophagy flux. Both Baicalin and Vitamin C could decrease apoptosis, but CQ did not, suggesting autophagy to be a protective function on the cell survival. In mice, Baicalin reduced the elevated blood glucose level caused by streptozotocin (STZ). Taken together, these data suggest that hyperglycemia-induced embryonic cardiovascular malformation can be attenuated by Baicalin administration through suppressing the excessive production of ROS and autophagy. Baicalin could be a potential candidate drug for women suffering from gestational diabetes mellitus

    Status and Prospects of ZnO-Based Resistive Switching Memory Devices

    Get PDF
    In the advancement of the semiconductor device technology, ZnO could be a prospective alternative than the other metal oxides for its versatility and huge applications in different aspects. In this review, a thorough overview on ZnO for the application of resistive switching memory (RRAM) devices has been conducted. Various efforts that have been made to investigate and modulate the switching characteristics of ZnO-based switching memory devices are discussed. The use of ZnO layer in different structure, the different types of filament formation, and the different types of switching including complementary switching are reported. By considering the huge interest of transparent devices, this review gives the concrete overview of the present status and prospects of transparent RRAM devices based on ZnO. ZnO-based RRAM can be used for flexible memory devices, which is also covered here. Another challenge in ZnO-based RRAM is that the realization of ultra-thin and low power devices. Nevertheless, ZnO not only offers decent memory properties but also has a unique potential to be used as multifunctional nonvolatile memory devices. The impact of electrode materials, metal doping, stack structures, transparency, and flexibility on resistive switching properties and switching parameters of ZnO-based resistive switching memory devices are briefly compared. This review also covers the different nanostructured-based emerging resistive switching memory devices for low power scalable devices. It may give a valuable insight on developing ZnO-based RRAM and also should encourage researchers to overcome the challenges

    Members of the nuclear factor ĪŗB family transactivate the murine c-myb gene

    Get PDF
    Expression of the c-myb proto-oncogene is primarily detected in normal tissue and tumor cell lines of immature hematopoietic origin, and the down- regulation of c-myb expression is associated with hematopoietic maturation. Cell lines that represent mature, differentiated hematopoietic cell types contain 10-100-fold less c-myb mRNA than immature hematopoietic cell types. Differences in steady-state c-myb mRNA levels appear to be primarily maintained by a conditional block to transcription elongation that occurs in the first intron of the gene. The block to transcription elongation has been mapped, using nuclear run-on analysis, to a region of DNA sequence that is highly conserved between mouse and man. Two sets of DNA-protein interactions, flanking the site of the block to transcription elongation, were detected that exhibited DNA-binding activities that strongly correlated with low steady-state c-myb mRNA levels. Several criteria demonstrated that members of the nuclear factor ĪŗB (NF-ĪŗB) family of transcription factors were involved in the DNA-protein interactions identified in these two sets. Surprisingly, cotransfection experiments demonstrated that coexpression of members of the NF-ĪŗB family, specifically p50 with p65 and p65 with c-Rel, transactivated a c-myb/chloramphenicol acetyltransferase reporter construct that contained 5'flanking sequences, exon I, intron I, and exon II of the c-myb gene. Transactivation by these heterodimer combinations was dependent on regions of the c-myb first intron containing the NF-ĪŗB-binding sites. These findings suggest that NF-ĪŗB family members may be involved in either modifying the efficiency of transcription attenuation or acting as an enhancer-like activity to increase transcription initiation. Thus, the regulation of c-myb transcription may be quite complex, and members of the NF-ĪŗB family likely play an important role in this regulation

    Highlights of the DNA cutters:a short history of the restriction enzymes

    Get PDF
    In the early 1950ā€™s, ā€˜host-controlled variation in bacterial virusesā€™ was reported as a non-hereditary phenomenon: one cycle of viral growth on certain bacterial hosts affected the ability of progeny virus to grow on other hosts by either restricting or enlarging their host range. Unlike mutation, this change was reversible, and one cycle of growth in the previous host returned the virus to its original form. These simple observations heralded the discovery of the endonuclease and methyltransferase activities of what are now termed Type I, II, III and IV DNA restriction-modification systems. The Type II restriction enzymes (e.g. EcoRI) gave rise to recombinant DNA technology that has transformed molecular biology and medicine. This review traces the discovery of restriction enzymes and their continuing impact on molecular biology and medicine
    • ā€¦
    corecore