3,753 research outputs found

    Extensive regulation of metabolism and growth during the cell division cycle

    Full text link
    Yeast cells grown in culture can spontaneously synchronize their respiration, metabolism, gene expression and cell division. Such metabolic oscillations in synchronized cultures reflect single-cell oscillations, but the relationship between the oscillations in single cells and synchronized cultures is poorly understood. To understand this relationship and the coordination between metabolism and cell division, we collected and analyzed DNA-content, gene-expression and physiological data, at hundreds of time-points, from cultures metabolically-synchronized at different growth rates, carbon sources and biomass densities. The data enabled us to extend and generalize an ensemble-average-over-phases (EAP) model that connects the population-average gene-expression of asynchronous cultures to the gene-expression dynamics in the single-cells comprising the cultures. The extended model explains the carbon-source specific growth-rate responses of hundreds of genes. Our data demonstrate that for a given growth rate, the frequency of metabolic cycling in synchronized cultures increases with the biomass density. This observation underscores the difference between metabolic cycling in synchronized cultures and in single cells and suggests entraining of the single-cell cycle by a quorum-sensing mechanism. Constant levels of residual glucose during the metabolic cycling of synchronized cultures indicate that storage carbohydrates are required to fuel not only the G1/S transition of the division cycle but also the metabolic cycle. Despite the large variation in profiled conditions and in the time-scale of their dynamics, most genes preserve invariant dynamics of coordination with each other and with the rate of oxygen consumption. Similarly, the G1/S transition always occurs at the beginning, middle or end of the high oxygen consumption phases, analogous to observations in human and drosophila cells.Comment: 34 pages, 7 figure

    Novel integrative genomics strategies to identify genes for complex traits

    Get PDF
    Forward genetics is a common approach to dissecting complex traits like common human diseases. The ultimate aim of this approach was the identification of genes that are causal for disease or other phenotypes of interest. However, the forward genetics approach is by definition restricted to the identification of genes that have incurred mutations over the course of evolution or that incurred mutations as a result of chemical mutagenesis, and that as a result lead to disease or to variations in other phenotypes of interest. Genes that harbour no such mutations, but that play key roles in parts of the biological network that lead to disease, are systematically missed by this class of approaches. Recently, a class of novel integrative genomics approaches has been devised to elucidate the complexity of common human diseases by intersecting genotypic, molecular profiling, and clinical data in segregating populations. These novel approaches take a more holistic view of biological systems and leverage the vast network of gene–gene interactions, in combination with DNA variation data, to establish causal relationships among molecular profiling traits and Fbetween molecular profiling and disease (or other classic phenotypes). A number of novel genes for disease phenotypes have been identified as a result of these approaches, highlighting the utility of integrating orthogonal sources of data to get at the underlying causes of disease

    Genetic Variation and the Fate of Beneficial Mutations in Asexual Populations

    Get PDF
    The fate of a newly arising beneficial mutation depends on many factors, such as the population size and the availability and fitness effects of other mutations that accumulate in the population. It has proved difficult to understand how these factors influence the trajectories of particular mutations, since experiments have primarily focused on characterizing successful clones emerging from a small number of evolving populations. Here, we present the results of a massively parallel experiment designed to measure the full spectrum of possible fates of new beneficial mutations in hundreds of experimental yeast populations, whether these mutations are ultimately successful or not. Using strains in which a particular class of beneficial mutation is detectable by fluorescence, we followed the trajectories of these beneficial mutations across 592 independent populations for 1000 generations. We find that the fitness advantage provided by individual mutations plays a surprisingly small role. Rather, underlying “background” genetic variation is quickly generated in our initially clonal populations and plays a crucial role in determining the fate of each individual beneficial mutation in the evolving population

    The timing of erf-mediated recombination in replication, lysogenization, and the formation of recombinant progeny by Salmonella phage P22

    Full text link
    Following infection, the development of phage P22 by either the lytic or the lysogenic pathways requires recombination, mediated either by the phage erf system or by the bacterial rec system [Botstein, D., and Matz, M. J. (1970) J. Mol. Biol. 54, 417-440]. We have investigated the timing of the essential recombinational processes with temperature-shift experiments using a temperature-sensitive erf mutant. In rec- cells, erf function appears to be required early in the infection to complete some essential step, the timing of which is the same in both the lytic and lysogenic circumstances. Once the step has taken place, subsequent development can occur without further erf function. However, the bulk of recombinant progeny arising in lytic crosses in rec- cells result from nonessential erf action late in the infection, after the time of the required early step.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/23011/1/0000580.pd

    Replication in situ and DNA encapsulation following induction of an excision-defective lysogen of Salmonella bacteriophage P22

    Full text link
    The induction of an excision-defective bacteriophage P22 lysogen results in the production of particles which carry a DNA molecule of normal length within a normal capsid, but which are nonetheless defective. The DNA content of these particles was characterized physically by a restriction enzyme analysis, and genetically by two marker rescue techniques. The particles carry DNA corresponding to one side of the prophage map as well as additional DNA, apparently derived from the host chromosome to one side of the prophage insertion site. Normally, mature P22 DNA molecules are derived from a concatemer by sequential cleavage of adjacent headful lengths, beginning at a genetically unique site, the encapsulation origin (Tye et al., 1974). The defective particles appear to contain DNA matured by the same sequential mechanisms, operating on the integrated prophage and neighboring bacterial chromosome, rather than on the normal concatemeric substrate. Both the initiation and directional specificities of normal maturation are maintained during the maturation of defective particle DNA. Sequential cleavage begins within the prophage at the encapsulation origin, a site near gene 3, and proceeds into the host chromosome on the proC side of the prophage. The initiation specificity of DNA encapsulation seems to reside in the morphogenetic machinery, rather than in the mechanism of DNA replication. Replication of an induced excision-defective prophage takes place in situ on the host chromosome, apparently without disruption of the linear integrity of the prophage. Further, the entire prophage, as well as adjacent bacterial DNA, is replicated, even though only a portion of this DNA is destined to be encapsulated.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/22678/1/0000231.pd
    • 

    corecore