611 research outputs found

    Validation of methods for converting the original Disease Activity Score (DAS) to the DAS28

    Get PDF
    © The Author(s) 2018.The Disease Activity Score (DAS) is integral in tailoring the clinical management of rheumatoid arthritis (RA) patients and is an important measure in clinical research. Different versions have been developed over the years to improve reliability and ease of use. Combining the original DAS and the newer DAS28 data in both contemporary and historical studies is important for both primary and secondary data analyses. As such, a methodologically robust means of converting the old DAS to the new DAS28 measure would be invaluable. Using data from The Early RA Study (ERAS), a sub-sample of patients with both DAS and DAS28 data were used to develop new regression imputation formulas using the total DAS score (univariate), and using the separate components of the DAS score (multivariate). DAS were transformed to DAS28 using an existing formula quoted in the literature, and the newly developed formulas. Bland and Altman plots were used to compare the transformed DAS with the recorded DAS28 to ascertain levels of agreement. The current transformation formula tended to overestimate the true DAS28 score, particularly at the higher end of the scale. A formula which uses all separate components of the DAS was found to estimate the scores with a higher level of precision. A new formula is proposed that can be used by other early RA cohorts to convert the original DAS to DAS28.Peer reviewedFinal Published versio

    Ferromagnetic Semiconductors: Moving Beyond (Ga,Mn)As

    Full text link
    The recent development of MBE techniques for growth of III-V ferromagnetic semiconductors has created materials with exceptional promise in spintronics, i.e. electronics that exploit carrier spin polarization. Among the most carefully studied of these materials is (Ga,Mn)As, in which meticulous optimization of growth techniques has led to reproducible materials properties and ferromagnetic transition temperatures well above 150 K. We review progress in the understanding of this particular material and efforts to address ferromagnetic semiconductors as a class. We then discuss proposals for how these materials might find applications in spintronics. Finally, we propose criteria that can be used to judge the potential utility of newly discovered ferromagnetic semiconductors, and we suggest guidelines that may be helpful in shaping the search for the ideal material.Comment: 37 pages, 4 figure

    Surfactant-Assisted in situ Chemical Etching for the General Synthesis of ZnO Nanotubes Array

    Get PDF
    In this paper, a general low-cost and substrate-independent chemical etching strategy is demonstrated for the synthesis of ZnO nanotubes array. During the chemical etching, the nanotubes array inherits many features from the preformed nanorods array, such as the diameter, size distribution, and alignment. The preferential etching along c axis and the surfactant protection to the lateral surfaces are considered responsible for the formation of ZnO nanotubes. This surfactant-assisted chemical etching strategy is highly expected to advance the research in the ZnO nanotube-based technology

    MicroRNA degradation by a conserved target RNA regulates animal behavior

    Get PDF
    International audiencemicroRNAs (miRNAs) repress target transcripts through partial complementarity. By contrast, highly complementary miRNA-binding sites within viral and artificially engineered transcripts induce miRNA degradation in vitro and in cell lines. Here, we show that a genome-encoded transcript harboring a near-perfect and deeply conserved miRNA-binding site for miR-29 controls zebrafish and mouse behavior. This transcript originated in basal vertebrates as a long noncoding RNA (lncRNA) and evolved to the protein-coding gene NREP in mammals, where the miR-29-binding site is located within the 3′ UTR. We show that the near-perfect miRNA site selectively triggers miR-29b destabilization through 3′ trimming and restricts its spatial expression in the cerebellum. Genetic disruption of the miR-29 site within mouse Nrep results in ectopic expression of cerebellar miR-29b and impaired coordination and motor learning. Thus, we demonstrate an endogenous target-RNA-directed miRNA degradation event and its requirement for animal behavio

    Ultraviolet radiation shapes seaweed communities

    Get PDF

    Immunohistochemical analysis of oxidative stress and DNA repair proteins in normal mammary and breast cancer tissues

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>During the course of normal cellular metabolism, oxygen is consumed and reactive oxygen species (ROS) are produced. If not effectively dissipated, ROS can accumulate and damage resident proteins, lipids, and DNA. Enzymes involved in redox regulation and DNA repair dissipate ROS and repair the resulting damage in order to preserve a functional cellular environment. Because increased ROS accumulation and/or unrepaired DNA damage can lead to initiation and progression of cancer and we had identified a number of oxidative stress and DNA repair proteins that influence estrogen responsiveness of MCF-7 breast cancer cells, it seemed possible that these proteins might be differentially expressed in normal mammary tissue, benign hyperplasia (BH), ductal carcinoma in situ (DCIS) and invasive breast cancer (IBC).</p> <p>Methods</p> <p>Immunohistochemistry was used to examine the expression of a number of oxidative stress proteins, DNA repair proteins, and damage markers in 60 human mammary tissues which were classified as BH, DCIS or IBC. The relative mean intensity was determined for each tissue section and ANOVA was used to detect statistical differences in the relative expression of BH, DCIS and IBC compared to normal mammary tissue.</p> <p>Results</p> <p>We found that a number of these proteins were overexpressed and that the cellular localization was altered in human breast cancer tissue.</p> <p>Conclusions</p> <p>Our studies suggest that oxidative stress and DNA repair proteins not only protect normal cells from the damaging effects of ROS, but may also promote survival of mammary tumor cells.</p

    No Sun-like dynamo on the active star ζ Andromedae from starspot asymmetry

    Get PDF
    This is the author accepted manuscript. The final version is available from Nature Publishing Group via the DOI in this record.Sunspots are cool areas caused by strong surface magnetic fields inhibiting convection. Moreover, strong magnetic fields can alter the average atmospheric structure , degrading our ability to measure stellar masses and ages. Stars more active than the Sun have more and stronger dark spots than in the solar case, including on the rotational pole itself. Doppler imaging, which has so far produced the most detailed images of surface structures on other stars than the Sun, cannot always distinguish the hemisphere in which the starspots are located, especially in the equatorial region and if the data quality is not optimal . This leads to problems in investigating the north-south distribution of starspot active latitudes (those latitudes with more spot activity), which are crucial constraints of dynamo theory. Polar spots, inferred only from Doppler tomography, could plausibly be observational artifacts, casting some doubt on their very existence. Here we report imaging of the old, magnetically-active star ζ Andromedae using long-baseline infrared interferometry. In our data, a dark polar spot is seen in each of two epochs, while lower-latitude spot structures in both hemispheres do not persist between observations revealing global starspot asymmetries. The north-south symmetry of active latitudes observed on the Sun is absent on ζ And, which hosts global spot patterns that cannot be produced by solar-type dynamos.National Science Foundation (NSF)Hungarian Academy of Science
    corecore