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Sunspots are cool areas caused by strong surface magnetic fields inhibiting 

convection1,2.  Moreover, strong magnetic fields can alter the average atmospheric 



structure3, degrading our ability to measure stellar masses and ages.  Stars more active 

than the Sun have more and stronger dark spots than in the solar case, including on the 

rotational pole itself4.  Doppler imaging, which has so far produced the most detailed 

images of surface structures on other stars than the Sun, cannot always distinguish the 

hemisphere in which the starspots are located, especially in the equatorial region and if the 

data quality is not optimal5. This leads to problems in investigating the north-south 

distribution of starspot active latitudes (those latitudes with more spot activity), which are 

crucial constraints of dynamo theory.  Polar spots, inferred only from Doppler 

tomography, could plausibly be observational artifacts, casting some doubt on their very 

existence6.  Here we report imaging of the old, magnetically-active star ζ Andromedae 

using long-baseline infrared interferometry.    In our data, a dark polar spot is seen in each 

of two epochs, while lower-latitude spot structures in both hemispheres do not persist 

between observations revealing global starspot asymmetries.  The north-south symmetry of 

active latitudes observed on the Sun7 is absent on ζ And, which hosts global spot patterns 

that cannot be produced by solar-type dynamos8.  

 

ζ And is a nearby active star that is both spatially large and spotted, making it one of a 

small number of promising imaging targets with current interferometric capabilities.  ζ And is a 

tidally-locked close binary (RS CVn) system consisting of a K-type cool giant and an unseen 

lower-mass companion star9.  Tidal interactions have spun-up the cool primary component, 

causing unusually strong starspots and magnetic activity4,10.  

 We observed ζ And during two observing campaigns of eleven nights spanning UT 2011 

Jul 9-22 and fourteen nights spanning UT 2013 September 12-30 (see Extended Data Table 1) 



with the Michigan InfraRed Combiner (MIRC)11 using all six telescopes at Georgia State 

University’s Center for High Angular Resolution Astronomy (CHARA) Array12 on Mount 

Wilson, CA, USA.  

 The 2011 and 2013 datasets were separately imaged onto a prolate ellipsoid via the 

imaging software SURFING (SURFace ImagING), an aperture synthesis imaging technique 

(Monnier, in preparation).  This novel approach replicates the fundamental ideas behind Doppler 

imaging in that the whole data set is mapped onto the rotating surface at once instead of night-

by-night snapshots. Treating each dataset as an ensemble also allows SURFING to fit stellar and 

orbital parameters (see Table 1) along with the surface temperature maps (see Figures 1 and 2).   

The surface temperature maps for ζ And show peaks of 4530 K and 4550 K and 

minimum values of 3540 K and 3660 K in 2011 and 2013, respectively.  The ~900 K range of 

temperatures we see across the surface is slightly larger than the ~700 K found from recent 

Doppler imaging work (from the Fe I 6430 Å line).  A strong dark polar spot is present in both of 

our imaging epochs, also consistent with recent Doppler imaging studies7,13,14.  In contrast to this 

persistent feature, many other large dark regions completely change from 2011 to 2013 with no 

apparent overall symmetry or pattern.  These features and their locations are only unambiguously 

imaged by interferometry, since Doppler and light-curve inversion imaging techniques 

experience latitude degeneracies (see Methods section for more details).  We now discuss the 

starspot implications on the dynamical large-scale magnetic field of ζ And.     

The extended network of cool regions stretching across the star suggest that strong 

magnetic fields can suppress convection on global scales, not just local concentrations forming 

spot structures.  The extent to which starspots can cover the surface of a star is presently 

unknown and of interest in understanding how activity saturates on rapidly-rotating, convective 



stars15.  The observations in hand lend support to studies that have suggested magnetic activity 

can be so widespread as to alter the apparent fundamental parameters of a star16,17.  For example, 

a larger region of suppressed convection gives a lower observed temperature, leading to 

inaccurate estimates for stellar mass and age3.  The changes in global magnetic features will 

produce long-term photometric variations that are often only attributed to changes in a growing 

or shrinking polar starspot.  We note that a polar starspot for ζ And does not affect the flux of the 

star as significantly as other large-scale magnetic structures due to the effects of limb darkening 

and foreshortening on this highly inclined system (i~70.0°).   

The interferometric images of ζ And provide a clear confirmation of the existence of 

polar spots.  Polar spots have been seen in Doppler images of ζ And9,13,14 and many other active 

stars4.  Polar spots produce spectral line-profile changes only in the line core itself (no Doppler 

shift), and the spectral signature of a symmetric polar spot is the same at each rotational phase of 

the star.  This signature makes polar spots very easy to be produced as artifacts in the Doppler 

imaging process; if the depth of the spectral line-profile is not correctly modeled, then the image 

will exhibit a polar spot.  Strong chromospheric activity has also been postulated to fill in at least 

some of the photospheric lines used in Doppler imaging, potentially producing a polar spot18,19. 

These facts made the reliability of polar spots highly debated in the early days of Doppler 

imaging20,21 and the independent confirmation of their existence here is highly significant. 

The interferometric images of ζ And presented here reveal the exact hemispheres of the 

spots and show strong asymmetries between the hemispheres, with 2011 map showing dominant 

spots on the northern and the 2013 on the southern hemisphere.  On the Sun the spots are 

typically seen on both hemispheres in certain active mid-latitude regions, with some breaking of 

the symmetry in the spot numbers on the two hemispheres7 but not as large of an asymmetry as 



seen on the ζ And.  Such asymmetries require a departure from the solar-type αΩ-dynamo to a 

more complicated dynamo, such as one with mixed parity modes22. 

While our results only strictly apply for giant stars in RS CVn binaries, we note strong 

parallels between the physical conditions and magnetic behavior of these and pre-main sequence 

stars.  To reach these conditions, the giant primary stars in RS CVn binaries rotate rapidly due to 

tidal spin-up and pre-main sequence stars rotate rapidly due to contraction and angular 

momentum transfer due to accretion of material from a circumstellar disk. These similar physical 

conditions hint at shared field-generation mechanisms that are observationally 

indistinguishable23 and manifest as starspots. In young associations, it has been noted that 

derived ages are likely strongly affected by global suppression of convection3. These 

commonalities and the known consequences argue that strong stellar magnetism must be 

accounted for in stellar models for both pre-main sequence and giant stages of evolution for the 

most active stars. 

Results from imaging studies using light-curve inversion and Doppler imaging 

techniques, as well as new interferometric spot studies24, all re-enforce the picture that global 

magnetic structures cover the faces of the most active stars.  Our interferometric imaging has 

found unambiguous signposts of these structures and clearly points to a perspective beyond the 

typical isolated spots observed on the Sun.  The large-scale suppression of convection by these 

large-scale fields will have structural effects on the stellar atmosphere, including puffing up the 

star and decreasing the effective temperature and luminosity, dramatic alterations that must be 

accounted for by modern stellar structure calculations especially for young, low-mass stars that 

universally show strong magnetic activity3,25.  In order to understand these structural effects, we 

must image with as much detail as possible more targets.  The procedures used here can provide 



similar H-band images for a handful of bright, spatially-large, spotted stars (e.g. σ Geminorum, λ 

Andromedae).  Impending advances in visible interferometry will allow for similar resolution on 

more stars (down to θ ~1.1 mas).  For stars that cannot be resolved in detail, combining 

interferometrically-observed photocenter shifts due to rotation of starspots in and out of view 

with Doppler imaging would resolve degeneracies inherent in the Doppler images allowing for 

more accurate surface maps.  By acquiring a number of these maps on several stars or a few 

epochs of the same targets, we would be able to understand how the changing magnetic field 

affects our observations of stellar parameters (including mass and age)3,26 and leads to new 

dynamo models, which will shed light on the impact of magnetism on stellar evolution27,28.   
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Table 1 – Parameters of ζ And. 

Parameter Value
Angular polar diameter, θLD (mas) 2.502 ± 0.008
Polar radius (R


) 15.0 ± 0.8 

Oblateness (major to polar axis) 1.060 ± 0.011 
Inclination, i (°) 70.0 ± 2.8 
Pole position angle (°, E of N) 126.0 ± 1.9 
Values from Literature  
Distance, d (pc) 17.98 ± 0.83[29] 
Effective temperature, Teff (K) 4600 ± 100[9] 
Luminosity, log L/L


 1.98 ± 0.04[9] 

Primary mass (M


) 2.6 ± 0.4[9] 
Secondary mass (M


) ~0.75[9] 

Iron metallicity [Fe/H]/[Fe/H]


 -0.30 ± 0.05[9] 
 
SURFING models assumed circular orbit (e = 0) using circular radial velocity conventions with 
an orbital period Porb = 17.7694260 ± 0.00004 days and time of nodal passage T0 = 49992.281 ± 
0.017 (MJD)30.  Limb darkening was held fixed with power-law exponent μ = 0.269, appropriate 
for ζ And based upon spectral type. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Figure 1 – Surface image of ζ And from 2011 July with eleven nights of data using 

SURFING.  a, The temperature of ζ And is presented in an Aitoff projection.  The contours 

represent every 200 K from 3400-4600 K.  The dashed line at the bottom pole is hidden due to 

inclination.  Arrows point to example starspots.  b, The surface reflects how the star is observed 

on the sky with H-band intensities (mean H = 1.64).  The ϕ= 0.000 plot shows longitude 0° at the 

bottom right of the star with 90° across the middle.  The phases assume circular orbit radial 

velocity conventions. 

 

Figure 2 – Surface images of ζ And from 2013 September with fourteen nights of data 

using SURFING.  These images are presented as in Figure 1, except the 200 K contours of the 

Aitoff projection (a) range from 3600-4600 K.  The polar spot is observed to have evolved 

between the two sets of observations.  The lower-latitudes spot present in the 2011 data set are 

not present in the 2013 data set, with the new spots mostly located below the equator, 

emphasizing the spot-latitude asymmetry observed. 

 
 

 

 

 

 

 

 

 

 



 

Methods  

Starspot Imaging Methods 

Large spots covering a substantial fraction of the stellar surface have been indirectly 

imaged using light-curve inversion and Doppler imaging techniques31,32.  Light-curve inversion 

reproduces spotted stellar surfaces based on time-series data and can only reproduce structures 

observed as rotational modulations—structures such as static polar spots are practically invisible 

to light-curve inversion imaging.  Light-curve inversion typically reveals only weak relative 

latitude information for the spots, although this can be improved with the combination of 

concurrent observations in multiple filters33.  A more detailed surface map, both in latitude and 

longitude, can be obtained with Doppler imaging, which creates surface temperature maps from 

tracking small changes in absorption lines as starspots rotate in and out of view32.  Still, this 

method cannot always distinguish the hemisphere in which the structures are located.  In order to 

confirm the important findings from these methods and to firmly understand global 

characteristics of activity that can alter stellar radii and effective temperature, a more direct 

imaging method is required that is immune to these ambiguities. 

The nearest magnetically-active stars are too small to be resolved by even our largest 

telescopes.  However, long-baseline interferometry has the potential to image sub-milliarcsecond 

features on the surfaces of nearby stars.  To date, interferometric imaging has been successfully 

used to confirm the oblateness and gravity darkening of rapidly-rotating stars34 and even to 

image a spotted stellar surface24.  To improve the resolution and imaging quality for rotating 

stars that show strong magnetic activity, we debut here an “imaging-on-a-sphere” technique that 

uses interferometeric observations from multiple nights to constrain a surface temperature map.  



This naturally takes advantage of the multiple views we have of starspot structures as they rotate 

across the disk of the star.  Interferometric imaging produces unique images that resolve the 

degeneracies in latitude of Doppler imaging and provides the first independent confirmation of 

the existence of polar starspots.   

Interferometric Data 

Our interferometric observations were obtained using the Michigan InfraRed Combiner 

(MIRC) at the Center for High Angular Resolution Astronomy (CHARA) Array.  The CHARA 

Array consists of six 1-m telescopes in a Y-shaped configuration with baselines ranging from 34 

to 331 m[12].  For the ζ And data, MIRC11 combined light from all six CHARA Array telescopes 

in the H-band (eight channels across 1.5-1.8 μm for λ/Δλ ~ 40), resulting in an angular 

resolution of λ/2B~0.5 milliarcseconds.   

The data were reduced and calibrated with the standard MIRC pipeline35.  We searched 

without success for evidence of the faint companion in our interferometry data using our proven 

grid search method36, and could only secure a 1-σ lower limit of 300:1 on the H-band flux ratio 

between primary and companion.   

 The data products obtained from reducing the CHARA/MIRC data with the standard 

pipelines consist of visibilities, closure phases, and triple amplitudes. Representative samples of 

the visibilities and closure phases are presented in Extend Data Figures 1 and 2 for a single night 

(UT 2013 September 15) of six-telescope CHARA/MIRC observations of ζ And.  The reduced 

data are available in OI-FITS format37 upon request. 

Calibration Stars 

 The twenty-five nights of interferometric data span 2011 July 9-22 and 2013 September 

12-30.  For these nights of observation we use four calibration stars (37 Andromedae, γ Pegasi, γ 



Trianguli, and 58 Ophiuchi) interspersed with observations of the target star ζ And. γ Peg, γ Tri, 

and 58 Oph are modeled as spherical, uniform disk stars38 with their parameters included in 

Extended Data Table 2.   

The calibrator 37 And is a recently-discovered binary system39 with primary-to-

secondary H-band flux ratio of 80 ± 20.  Ordinarily, binary stars make poor calibrators, but the 

37 And system was observed enough times to determine its orbit precisely and salvage its use for 

calibrating our primary target ζ And.   We detect the companion of 37 And in nineteen nights of 

data (see Extended Data Table 3) using a grid search for the companion.  To constrain orbital 

parameters, we combined the visual orbit with the primary star’s radial velocity curve obtained 

with archival spectra from the ELODIE high-resolution échelle spectrograph formerly on a 1.93-

m telescope at Observatoire de Haute-Provence, France40.  Extended Data Figures 3 and 4 show 

the system orbit and radial velocity curve and Extended Data Table 4 contains the system orbital 

parameters.  The orbital parameters are used in the MIRC calibration pipeline to account for the 

effect of the companion of 37 And.   

SURFING imaging code 

 The image reconstruction code SURFING (SURFace imagING) was specially written for 

this project: to image surfaces of rotating stars.  We create a global model of the star, including 

geometrical parameters (polar radius, oblateness, inclination, pole position angle, limb darkening 

coefficient, rotational period, epoch) as well as the surface temperature map.  We cover the 

surface with tiles of equal area using the HEALPix methodology41, using 768 tiles to match the 

spatial resolution of CHARA.  Each tile has an area of 0.025 mas2.  We represent the shape of 

the stellar photosphere as a prolate spheroid to approximate a slightly partially-filling Roche 

potential.  The deviation from spherical appears as gravity darkening and accounts for a 



temperature difference of only ~60 K, which is much smaller than the temperature variations of 

the starspots. 

 We sampled the large range of geometrical models using an affine invariant ensemble 

Markov chain Monte Carlo approach42, with a nested loop to iteratively optimize the surface 

temperature map within each walker of the outer loop (this was needed as the 768 free 

parameters needed to characterize the temperature map would be intractable using a Markov 

chain approach).  Extensive testing was carried out using blind simulated data to optimize the 

speed of convergence.  In addition to minimizing the χ2 statistic, we also incorporated priors on 

each parameter and could experiment with a variety of imaging regularizers, such at Total 

Variation (TV) or L2norm of wavelet coefficients.    

 In addition to testing the code on simulated data, we were also able to check results using 

soon-to-be-published data on the spotted star λ And24, finding comparable results and confirming 

the inclination and position angle of the pole.  We also checked that the imaging-derived 

orientation of another RS CVn (σ Gem, Roettenbacher et al. in preparation) matched the orbital 

plane of the close companion. The results of these tests and additional details about the 

implementation of our method will be described in a future paper (Monnier et al., in preparation). 

ζ And Parameters from SURFING 

 Another test of the robustness of our fitting methodology is to determine the stellar 

orientation for independent data sets and compare the results.  While the magnetic field 

structures will vary from year to year, the inclination of the pole and its position angle on the sky 

will not.  Extended Figure 5 shows a χ2 surface for three separate years: a 2008 pilot set of 

observations using the MIRC four-telescope system, the 2011 dataset, and the 2013 dataset.   

This figure shows two large regions of reduced χ2 around inclination i = 90° and PA = -60° or 



120°.  These regions reflect the oblateness of the star and the basic orientation on the sky.  The 

region near inclination i = 70°, PA = 120° has the lowest χ2 in all years, especially in 2013. This 

tells us the spots move from south-west toward north-east and not the other way around, and the 

consistent picture from year to year both shows the efficacy of the code and gives confidence 

that we are measuring true astrophysical signal and not over-fitting noise or systematic errors. 

The results from these grid studies have been used to robustly estimate the geometrical 

parameters for ζ And, and these parameters are found in Table 1.  The error bars associated with 

the parameters were determined by combining the results of data sets from 2011 and 2013, with 

the additional data from 2008.  As the 2008 data were obtained with only four CHARA 

telescopes, they are not of high enough quality for imaging.   

To convert H-band intensities from the reconstructed images into photospheric 

temperatures, we utilized Kurucz atmospheric models43 for [Fe/H]=-0.25 and appropriate log g.  

Note that the overall temperature scale in our maps is uncertain (overall multiplicative scaling) 

due to lack of coeval photometry at H band; here we adopted mean H-band magnitude of H = 

1.64 based on archival infrared photometry. 

ζ And Imaging Tests 

 The previous section laid out our robust method for determining the geometrical 

parameters of ζ And by using three independent observing data from different years.  The next 

issue is to determine the reliability of the surface temperature maps. We split the extensive 

CHARA/MIRC data from 2013 into two sets of seven nights each, alternating chronologically 

which night went to which set.  Since spots take many days to cross the face of the star, each 

dataset should be viewing the same spots even though the timing was different.  We present a 

comparison of the SURFING results in Extended Figure 6.  Both partial datasets reproduce the 



main features observed by the full dataset shown in the main text.  This proves that the features 

seen in the maps are real and are not the result of an over-fitting to poor quality data or 

peculiarities of the nightly uv coverage.   

 The unprecedented phase coverage in the 2011 and (especially) the 2013 observing runs 

have allowed for textbook imaging fidelity tests for ζ And.  We show the large-scale dark 

regions that cover ζ And are highly robust and statistically significant, likely deriving from 

magnetically-suppressed convection. 

Code Availability 

 At present, we have opted not to make the SURFING code available because of a 

publication in preparation, which will detail the use and the applicability of the resource.   
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Extended Data Table 1 – Observations and calibrators of ζ And.   

 

Extended Data Table 2 – Uniform disk sizes (H-band) of calibrators.   

The uniform disk diameters were obtained with SearchCal38. 

 

Extended Data Table 3 – Binary separation and position angle measurements of 37 And.  

 

Extended Data Table 4 – Orbital parameters of 37 And.   

The orbital parameters were obtained by combining the ELODIE radial velocity curve with the 

CHARA/MIRC detections.  
 

 

 

 

 

 

 

 

 

 

 



Extended Data Figure 1 – Visibility curve of UT 2013 September 15 observations of ζ And 

with CHARA/MIRC.  The observed visibilities are plotted in black with 1σ error bars and the 

SURFING model visibilities are overlaid in red.  

 

Extended Data Figure 2 – Closure phases of UT 2013 September 15 observations of ζ And 

with CHARA/MIRC.  Each block represents a temporal block of observations with data plotted 

in black (with 1σ errors) and SURFING model in red.   

 

Extended Data Figure 3 – Orbit of 37 And.  The gray plus signs represent measurements of the 

companion (1σ errors on detections are smaller than the symbols).  The observed resolved disk 

of 37 And is plotted as the black dot at the origin.  The thin solid black line is the best-fit orbit 

from combining the interferometric detections and the ELODIE radial velocities.  Note:  the axis 

units are milliarcseconds (mas) with north up and east to the left.  

 

Extended Data Figure 4 – Radial velocity curve of the primary star of 37 And.  The data 

points are based upon archival ELODIE spectra (with 1σ error bars).  The orbital solution used 

the velocity measurements and the interferometric measurements simultaneously.  The solid line 

is the best-fit orbit and the gray lines are fifty Monte Carlo realizations of the orbit. 

 

Extended Data Figure 5 – Reduced, normalized χ2 surface plot of the SURFING model fit 

for position angle and inclination of ζ And.  The peak is found at PA = 126.0° ± 1.9 and i = 

70.0° ± 2.8.  The epoch of each data set is located in the upper left of the panel.   

 



Extended Data Figure 6 – Comparison of the 2013 CHARA/MIRC data set divided into 

two sets of seven nights of data.  These projections are plotted as the Aitoff projection in Figure 

2. 
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