2,883 research outputs found

    DNA-GA: A new approach of network performance analysis

    Full text link
    © 2016 IEEE. In this paper, we propose a new approach of network performance analysis, which is based on our previous works on the deterministic network analysis using the Gaussian approximation (DNA-GA). First, we extend our previous works to a signal-to-interference ratio (SIR) analysis, which makes our DNA-GA analysis a formal microscopic analysis tool. Second, we show two approaches for upgrading the DNA-GA analysis to a macroscopic analysis tool. Finally, we perform a comparison between the proposed DNA-GA analysis and the existing macroscopic analysis based on stochastic geometry. Our results show that the DNA-GA analysis possesses a few special features: (i) shadow fading is naturally considered in the DNA-GA analysis; (ii) the DNA-GA analysis can handle non-uniform user distributions and any type of multi-path fading; (iii) the shape and/or the size of cell coverage areas in the DNA-GA analysis can be made arbitrary for the treatment of hotspot network scenarios. Thus, DNA-GA analysis is very useful for the network performance analysis of the 5th generation (5G) systems with general cell deployment and user distribution, both on a microscopic level and on a macroscopic level

    Soft-Boosted Self-Constructing Neural Fuzzy Inference Network

    Full text link
    © 2013 IEEE. This correspondence paper proposes an improved version of the self-constructing neural fuzzy inference network (SONFIN), called soft-boosted SONFIN (SB-SONFIN). The design softly boosts the learning process of the SONFIN in order to decrease the error rate and enhance the learning speed. The SB-SONFIN boosts the learning power of the SONFIN by taking into account the numbers of fuzzy rules and initial weights which are two important parameters of the SONFIN, SB-SONFIN advances the learning process by: 1) initializing the weights with the width of the fuzzy sets rather than just with random values and 2) improving the parameter learning rates with the number of learned fuzzy rules. The effectiveness of the proposed soft boosting scheme is validated on several real world and benchmark datasets. The experimental results show that the SB-SONFIN possesses the capability to outperform other known methods on various datasets

    The prevalence of loneliness across 113 countries: systematic review and meta-analysis.

    Full text link
    OBJECTIVES: To identify data availability, gaps, and patterns for population level prevalence of loneliness globally, to summarise prevalence estimates within World Health Organization regions when feasible through meta-analysis, and to examine temporal trends of loneliness in countries where data exist. DESIGN: Systematic review and meta-analysis. DATA SOURCES: Embase, Medline, PsycINFO, and Scopus for peer reviewed literature, and Google Scholar and Open Grey for grey literature, supplemented by backward reference searching (to 1 September 2021) ELIGIBILITY CRITERIA FOR SELECTING STUDIES: Observational studies based on nationally representative samples (n≥292), validated instruments, and prevalence data for 2000-19. Two researchers independently extracted data and assessed the risk of bias using the Joanna Briggs Institute checklist. Random effects meta-analysis was conducted in the subset of studies with relatively homogeneous research methods by measurement instrument, age group, and WHO region. RESULTS: Prevalence data were available for 113 countries or territories, according to official WHO nomenclature for regions, from 57 studies. Data were available for adolescents (12-17 years) in 77 countries or territories, young adults (18-29 years) in 30 countries, middle aged adults (30-59 years) in 32 countries, and older adults (≥60 years) in 40 countries. Data for all age groups except adolescents were lacking outside of Europe. Overall, 212 estimates for 106 countries from 24 studies were included in meta-analyses. The pooled prevalence of loneliness for adolescents ranged from 9.2% (95% confidence interval 6.8% to 12.4%) in South-East Asia to 14.4% (12.2% to 17.1%) in the Eastern Mediterranean region. For adults, meta-analysis was conducted for the European region only, and a consistent geographical pattern was shown for all adult age groups. The lowest prevalence of loneliness was consistently observed in northern European countries (2.9%, 1.8% to 4.5% for young adults; 2.7%, 2.4% to 3.0% for middle aged adults; and 5.2%, 4.2% to 6.5% for older adults) and the highest in eastern European countries (7.5%, 5.9% to 9.4% for young adults; 9.6%, 7.7% to 12.0% for middle aged adults; and 21.3%, 18.7% to 24.2% for older adults). CONCLUSION: Problematic levels of loneliness are experienced by a substantial proportion of the population in many countries. The substantial difference in data coverage between high income countries (particularly Europe) and low and middle income countries raised an important equity issue. Evidence on the temporal trends of loneliness is insufficient. The findings of this meta-analysis are limited by data scarcity and methodological heterogeneity. Loneliness should be incorporated into general health surveillance with broader geographical and age coverage, using standardised and validated measurement tools. SYSTEMATIC REVIEW REGISTRATION: PROSPERO CRD42019131448

    Comparison of solitary and collective foraging strategies of Caenorhabditis elegans in patchy food distributions

    Get PDF
    Collective foraging has been shown to benefit organisms in environments where food is patchily distributed, but whether this is true in the case where organisms do not rely on long range communications to coordinate their collective behaviour has been understudied. To address this question, we use the tractable laboratory model organism Caenorhabditis elegans, where a social strain (npr-1 mutant) and a solitary strain (N2) are available for direct comparison of foraging strategies. We first developed an on-lattice minimal model for comparing collective and solitary foraging strategies, finding that social agents benefit from feeding faster and more efficiently simply due to group formation. Our laboratory foraging experiments with npr-1 and N2 worm populations, however, show an advantage for solitary N2 in all food distribution environments that we tested. We incorporated additional strain43 specific behavioural parameters of npr-1 and N2 worms into our model and computationally identified N2’s higher feeding rate to be the key factor underlying its advantage, without which it is possible to recapitulate the advantage of collective foraging in patchy environments. Our work highlights the theoretical advantage of collective foraging due to group formation alone without long-range interactions, and the valuable role of modelling to guide experiments

    A momentum-dependent perspective on quasiparticle interference in Bi_{2}Sr_{2}CaCu_{2}O_{8+\delta}

    Full text link
    Angle Resolved Photoemission Spectroscopy (ARPES) probes the momentum-space electronic structure of materials, and provides invaluable information about the high-temperature superconducting cuprates. Likewise, the cuprate real-space, inhomogeneous electronic structure is elucidated by Scanning Tunneling Spectroscopy (STS). Recently, STS has exploited quasiparticle interference (QPI) - wave-like electrons scattering off impurities to produce periodic interference patterns - to infer properties of the QP in momentum-space. Surprisingly, some interference peaks in Bi_{2}Sr_{2}CaCu_{2}O_{8+\delta} (Bi-2212) are absent beyond the antiferromagnetic (AF) zone boundary, implying the dominance of particular scattering process. Here, we show that ARPES sees no evidence of quasiparticle (QP) extinction: QP-like peaks are measured everywhere on the Fermi surface, evolving smoothly across the AF zone boundary. This apparent contradiction stems from different natures of single-particle (ARPES) and two-particle (STS) processes underlying these probes. Using a simple model, we demonstrate extinction of QPI without implying the loss of QP beyond the AF zone boundary

    Epidemiologic application of verbal autopsy to investigate the high occurrence of cancer along Huai River Basin, China

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In 2004, the media repeatedly reported water pollution and "cancer villages" along the Huai River in China. Due to the lack of death records for more than 30 years, a retrospective survey of causes of death using verbal autopsy was carried out to investigate cancer rates in this area.</p> <p>Methods</p> <p>An epidemiologic study was designed to compare numbers of deaths and causes of death between the study areas with water pollution and the control areas without water pollution in S County and Y District in 2005. The study areas were selected based on the distribution of the Huai River and its tributaries. Verbal autopsy was used to assist cause of death (COD) diagnoses and to verify mortality rates. The standard mortality rates (SMRs) of cancer in the study area were compared with those in the control areas. In order to verify the difference between mortality rates due to cancers in the study and the control areas, patients who reported having cancer in the survey received a second diagnosis by national and provincial oncologists with pathological and laboratory examinations. Comparisons were made to determine if differential cancer prevalence rates in the study and control areas were similar to the difference in mortality due to cancer in these study and control areas. Mortality rates of cancers in study and control areas were also compared with national statistics for the rural population of China.</p> <p>Results</p> <p>Over five years, 3,301 deaths were identified, including 1,158 cancer deaths. The annual average SMRs of cancer in the study areas of S County and Y District were 277.8/100,000 and 223.6/100,000, respectively, which is three to four times higher than those in the control areas. In addition, a total of 626 cases of cancer in the study and control areas were confirmed. The prevalence rates of cancer were 545/100,000 and 128.1/100,000 per year in the study and control areas in S County, respectively, and 440.9/100,000 and 200/100,000 per year in the study and control areas in Y District, respectively. The mortality and prevalence rates of digestive cancers were higher in the study areas than the control areas. In 2000, the SMR for cancer in rural areas nationwide was 120.9/100,000, and in study areas in S County and Y District, the excess rates of deaths were 184/100,000 and 138.8/100,000, respectively.</p> <p>Conclusions</p> <p>The death rates of digestive cancers were much higher in the study areas of S County and Y District. The patterns for between-area differences in prevalence and mortality rates of cancer were similar. Verbal autopsy is shown to be a useful tool in retrospective mortality surveys in low-resource areas with limited access to health care.</p

    Large sulfur isotope fractionations in Martian sediments at Gale crater

    No full text
    Variability in the sulfur isotopic composition in sediments can reflect atmospheric, geologic and biological processes. Evidence for ancient fluvio-lacustrine environments at Gale crater on Mars and a lack of efficient crustal recycling mechanisms on the planet suggests a surface environment that was once warm enough to allow the presence of liquid water, at least for discrete periods of time, and implies a greenhouse effect that may have been influenced by sulfur-bearing volcanic gases. Here we report in situ analyses of the sulfur isotopic compositions of SO2 volatilized from ten sediment samples acquired by NASA’s Curiosity rover along a 13 km traverse of Gale crater. We find large variations in sulfur isotopic composition that exceed those measured for Martian meteorites and show both depletion and enrichment in 34S. Measured values of δ34S range from −47 ± 14‰ to 28 ± 7‰, similar to the range typical of terrestrial environments. Although limited geochronological constraints on the stratigraphy traversed by Curiosity are available, we propose that the observed sulfur isotopic signatures at Gale crater can be explained by equilibrium fractionation between sulfate and sulfide in an impact-driven hydrothermal system and atmospheric processing of sulfur-bearing gases during transient warm periods

    Manifold Elastic Net: A Unified Framework for Sparse Dimension Reduction

    Full text link
    It is difficult to find the optimal sparse solution of a manifold learning based dimensionality reduction algorithm. The lasso or the elastic net penalized manifold learning based dimensionality reduction is not directly a lasso penalized least square problem and thus the least angle regression (LARS) (Efron et al. \cite{LARS}), one of the most popular algorithms in sparse learning, cannot be applied. Therefore, most current approaches take indirect ways or have strict settings, which can be inconvenient for applications. In this paper, we proposed the manifold elastic net or MEN for short. MEN incorporates the merits of both the manifold learning based dimensionality reduction and the sparse learning based dimensionality reduction. By using a series of equivalent transformations, we show MEN is equivalent to the lasso penalized least square problem and thus LARS is adopted to obtain the optimal sparse solution of MEN. In particular, MEN has the following advantages for subsequent classification: 1) the local geometry of samples is well preserved for low dimensional data representation, 2) both the margin maximization and the classification error minimization are considered for sparse projection calculation, 3) the projection matrix of MEN improves the parsimony in computation, 4) the elastic net penalty reduces the over-fitting problem, and 5) the projection matrix of MEN can be interpreted psychologically and physiologically. Experimental evidence on face recognition over various popular datasets suggests that MEN is superior to top level dimensionality reduction algorithms.Comment: 33 pages, 12 figure

    Nodal quasiparticle meltdown in ultra-high resolution pump-probe angle-resolved photoemission

    Full text link
    High-TcT_c cuprate superconductors are characterized by a strong momentum-dependent anisotropy between the low energy excitations along the Brillouin zone diagonal (nodal direction) and those along the Brillouin zone face (antinodal direction). Most obvious is the d-wave superconducting gap, with the largest magnitude found in the antinodal direction and no gap in the nodal direction. Additionally, while antinodal quasiparticle excitations appear only below TcT_c, superconductivity is thought to be indifferent to nodal excitations as they are regarded robust and insensitive to TcT_c. Here we reveal an unexpected tie between nodal quasiparticles and superconductivity using high resolution time- and angle-resolved photoemission on optimally doped Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta}. We observe a suppression of the nodal quasiparticle spectral weight following pump laser excitation and measure its recovery dynamics. This suppression is dramatically enhanced in the superconducting state. These results reduce the nodal-antinodal dichotomy and challenge the conventional view of nodal excitation neutrality in superconductivity.Comment: 7 pages, 3 figure. To be published in Nature Physic
    corecore