1,287 research outputs found

    Protostellar collapse induced by compression. II: rotation and fragmentation

    Full text link
    We investigate numerically and semi-analytically the collapse of low-mass, rotating prestellar cores. Initially, the cores are in approximate equilibrium with low rotation (the initial ratio of thermal to gravitational energy is α00.5\alpha_0 \simeq 0.5, and the initial ratio of rotational to gravitational energy is β0=0.02to0.05\beta_0 = 0.02 {\rm to} 0.05). They are then subjected to a steady increase in external pressure. Fragmentation is promoted -- in the sense that more protostars are formed -- both by more rapid compression, and by higher rotation (larger β0\beta_0). In general, the large-scale collapse is non-homologous, and follows the pattern described in Paper I for non-rotating clouds, viz. a compression wave is driven into the cloud, thereby increasing the density and the inflow velocity. The effects of rotation become important at the centre, where the material with low angular momentum forms a central primary protostar (CPP), whilst the material with higher angular momentum forms an accretion disc around the CPP. More rapid compression drives a stronger compression wave and delivers material more rapidly into the outer parts of the disc.Comment: 17 pages, accepted for publication in MNRA

    Topological transitions and freezing in XY models and Coulomb gases with quenched disorder: renormalization via traveling waves

    Full text link
    We study the two dimensional XY model with quenched random phases and its Coulomb gas formulation. A novel renormalization group (RG) method is developed which allows to study perturbatively the glassy low temperature XY phase and the transition at which frozen topological defects (vortices) proliferate. This RG approach is constructed both from the replicated Coulomb gas and, equivalently without the use of replicas, using the probability distribution of the local disorder (random defect core energy). By taking into account the fusion of environments (i.e charge fusion in the replicated Coulomb gas) this distribution is shown to obey a Kolmogorov's type (KPP) non linear RG equation which admits travelling wave solutions and exhibits a freezing phenomenon analogous to glassy freezing in Derrida's random energy models. The resulting physical picture is that the distribution of local disorder becomes broad below a freezing temperature and that the transition is controlled by rare favorable regions for the defects, the density of which can be used as the new perturbative parameter. The determination of marginal directions at the disorder induced transition is shown to be related to the well studied front velocity selection problem in the KPP equation and the universality of the novel critical behaviour obtained here to the known universality of the corrections to the front velocity. Applications to other two dimensional problems are mentionned at the end.Comment: 86 pages, 15 eps files include

    A Rare Case of Recurrent Myoid Hamartoma Mimicking Malignancy: Imaging Appearances

    Get PDF
    Myoid hamartoma is an uncommon type of breast hamartoma and its recurrence is very rare. We report the imaging appearance of an unusual case of recurrent myoid hamartoma of the breast mimicking malignancy in a 43-year-old woman. Although the mammographic and ultrasonographic findings have long been described in the literature, MR finding with a dynamic study has not, to the best of our knowledge, been reported previously

    Non-perturbative contributions to the plane-wave string mass matrix

    Full text link
    D-instanton contributions to the mass matrix of arbitrary excited string states of type IIB string theory in the maximally supersymmetric plane-wave background are calculated to leading order in the string coupling using a supersymmetric light-cone boundary state formalism. The explicit non-perturbative dependence of the mass matrix on the complex string coupling, the plane-wave mass parameter and the mode numbers of the excited states is determined.Comment: 25 pages, 1 figure. v3: corrected minor typos, added referenc

    Inhibition of Inducible Nitric Oxide Synthase Attenuates Monosodium Urate-induced Inflammation in Mice

    Get PDF
    The present study elucidated the effect of the selective inducible nitric oxide synthase (iNOS) inhibitor N6-(1-iminoethyl)-L-lysine (L-NIL) on monosodium urate (MSU) crystal-induced inflammation and edema in mice feet. L-NIL (5 or 10 mg/kg/day) was administered intraperitoneally 4 h before injection of MSU (4 mg) into the soles of mice hindlimb feet. Twenty-four hours after MSU injection, foot thickness was increased by 160% and L-NIL pretreatment reduced food pad swelling in a dose dependent manner. Pretreatment of 10 mg/kg/day L-NIL significantly suppressed the foot pad swelling by MSU. Plasma level of nitric oxide (NO) metabolites and gene expression and protein level of iNOS in feet were increased by MSU, which was suppressed by L-NIL pretreatment. Similar pattern of change was observed in nitrotyrosine level. MSU increased the gene expression of tumor necrosis factor (TNF)-α and interleukin (IL)-1β and L-NIL pretreatment suppressed MSU-induced cytokines expression. The mRNA levels of superoxide dismutase and glutathione peroxidase1 were increased by MSU and L-NIL pretreatment normalized the gene expression. Phosphorylation of extracellular signal-regulated kinase 1/2 and p38 was increased by MSU, which was suppressed by L-NIL pretreatment. The mRNA levels of iNOS, TNF-α, and IL-1β were increased by MSU in human dermal fibroblasts, C2C12 myoblasts, and human fetal osteoblasts in vitro, which was attenuated by L-NIL in a dose dependent manner. This study shows that L-NIL inhibits MSU-induced inflammation and edema in mice feet suggesting that iNOS might be involved in MSU-induced inflammation

    Axial Higgs Mode Detected by Quantum Pathway Interference in RTe3

    Full text link
    The observation of the Higgs boson solidified the standard model of particle physics. However, explanations of anomalies (e.g. dark matter) rely on further symmetry breaking calling for an undiscovered axial Higgs mode. In condensed matter the Higgs was seen in magnetic, superconducting and charge density wave(CDW) systems. Uncovering a low energy mode's vector properties is challenging, requiring going beyond typical spectroscopic or scattering techniques. Here, we discover an axial Higgs mode in the CDW system RTe3 using the interference of quantum pathways. In RTe3 (R=La,Gd), the electronic ordering couples bands of equal or different angular momenta. As such, the Raman scattering tensor associated to the Higgs mode contains both symmetric and antisymmetric components, which can be excited via two distinct, but degenerate pathways. This leads to constructive or destructive interference of these pathways, depending on the choice of the incident and Raman scattered light polarization. The qualitative behavior of the Raman spectra is well-captured by an appropriate tight-binding model including an axial Higgs mode. The elucidation of the antisymmetric component provides direct evidence that the Higgs mode contains an axial vector representation (i.e. a pseudo-angular momentum) and hints the CDW in RTe3 is unconventional. Thus we provide a means for measuring collective modes quantum properties without resorting to extreme experimental conditions

    Performance improvement in geographic routing for vehicular Ad Hoc networks

    Get PDF
    Geographic routing is one of the most investigated themes by researchers for reliable and efficient dissemination of information in Vehicular Ad Hoc Networks (VANETs). Recently, different Geographic Distance Routing (GEDIR) protocols have been suggested in the literature. These protocols focus on reducing the forwarding region towards destination to select the Next Hop Vehicles (NHV). Most of these protocols suffer from the problem of elevated one-hop link disconnection, high end-to-end delay and low throughput even at normal vehicle speed in high vehicle density environment. This paper proposes a Geographic Distance Routing protocol based on Segment vehicle, Link quality and Degree of connectivity (SLD-GEDIR). The protocol selects a reliable NHV using the criteria segment vehicles, one-hop link quality and degree of connectivity. The proposed protocol has been simulated in NS-2 and its performance has been compared with the state-of-the-art protocols: P-GEDIR, J-GEDIR and V-GEDIR. The empirical results clearly reveal that SLD-GEDIR has lower link disconnection and end-to-end delay, and higher throughput as compared to the state-of-the-art protocols. It should be noted that the performance of the proposed protocol is preserved irrespective of vehicle density and spee

    Structure-function study of maize ribosome-inactivating protein: implications for the internal inactivation region and the sole glutamate in the active site

    Get PDF
    Maize ribosome-inactivating protein is classified as a class III or an atypical RNA N-glycosidase. It is synthesized as an inactive precursor with a 25-amino acid internal inactivation region, which is removed in the active form. As the first structural example of this class of proteins, crystals of the precursor and the active form were diffracted to 2.4 and 2.5 Å, respectively. The two proteins are similar, with main chain root mean square deviation (RMSD) of 0.519. In the precursor, the inactivation region is found on the protein surface and consists of a flexible loop followed by a long α-helix. This region diminished both the interaction with ribosome and cytotoxicity, but not cellular uptake. Like bacterial ribosome-inactivating proteins, maize ribosome-inactivating protein does not have a back-up glutamate in the active site, which helps the protein to retain some activity if the catalytic glutamate is mutated. The structure reveals that the active site is too small to accommodate two glutamate residues. Our structure suggests that maize ribosome-inactivating protein may represent an intermediate product in the evolution of ribosome-inactivating proteins. © 2007 The Author(s).published_or_final_versio

    Association of patients' sex with treatment outcomes after intravesical bacillus Calmette-Guérin immunotherapy for T1G3/HG bladder cancer.

    Get PDF
    Purpose: To investigate the association of patients' sex with recurrence and disease progression in patients treated with intravesical bacillus Calmette-Guérin (BCG) for T1G3/HG urinary bladder cancer (UBC). Materials and methods: We analyzed the data of 2635 patients treated with adjuvant intravesical BCG for T1 UBC between 1984 and 2019. We accounted for missing data using multiple imputations and adjusted for covariate imbalance between males and females using inverse probability weighting (IPW). Crude and IPW-adjusted Cox regression analyses were used to estimate the hazard ratios (HR) with their 95% confidence intervals (CI) for the association of patients' sex with HG-recurrence and disease progression. Results: A total of 2170 (82%) males and 465 (18%) females were available for analysis. Overall, 1090 (50%) males and 244 (52%) females experienced recurrence, and 391 (18%) males and 104 (22%) females experienced disease progression. On IPW-adjusted Cox regression analyses, female sex was associated with disease progression (HR 1.25, 95%CI 1.01-1.56, p = 0.04) but not with recurrence (HR 1.06, 95%CI 0.92-1.22, p = 0.41). A total of 1056 patients were treated with adequate BCG. In these patients, on IPW-adjusted Cox regression analyses, patients' sex was not associated with recurrence (HR 0.99, 95%CI 0.80-1.24, p = 0.96), HG-recurrence (HR 1.00, 95%CI 0.78-1.29, p = 0.99) or disease progression (HR 1.12, 95%CI 0.78-1.60, p = 0.55). Conclusion: Our analysis generates the hypothesis of a differential response to BCG between males and females if not adequately treated. Further studies should focus on sex-based differences in innate and adaptive immune system and their association with BCG response
    corecore