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ABSTRACT

Maize ribosome-inactivating protein is classified
as a class III or an atypical RNA N-glycosidase.
It is synthesized as an inactive precursor with a
25-amino acid internal inactivation region, which is
removed in the active form. As the first structural
example of this class of proteins, crystals of the
precursor and the active form were diffracted to
2.4 and 2.5 Å, respectively. The two proteins are
similar, with main chain root mean square deviation
(RMSD) of 0.519. In the precursor, the inactivation
region is found on the protein surface and consists
of a flexible loop followed by a long a-helix. This
region diminished both the interaction with ribo-
some and cytotoxicity, but not cellular uptake.
Like bacterial ribosome-inactivating proteins,
maize ribosome-inactivating protein does not have
a back-up glutamate in the active site, which helps
the protein to retain some activity if the catalytic
glutamate is mutated. The structure reveals that
the active site is too small to accommodate two
glutamate residues. Our structure suggests that
maize ribosome-inactivating protein may represent
an intermediate product in the evolution of
ribosome-inactivating proteins.

INTRODUCTION

Ribosome-inactivating proteins (RIPs) are N-glycosidases
which cleave the N-glycosidic bond of adenine-4324 in
eukaryotic 28S rRNA or adenine-2660 in Escherichia coli
23S rRNA (1,2). This adenine is located in a highly

conserved GAGA hairpin within the a-sarcin/ricin loop.
Removal of the specific adenine hinders the elongation
factor 1-dependent binding of aminoacyl-tRNA and GTP-
dependent binding of elongation factor 2 to the ribosome.
Thus, protein synthesis is arrested at the elongation step
(2,3). RIPs get access to the ribosome by firstly interacting
with ribosomal proteins; for example, trichosanthin (TCS)
binds to the acidic ribosomal P proteins (4,5), ricin A
chain (RTA) binds to L9 and L10e (6) and pokeweed
antiviral protein (PAP) binds to L3 (7–9).
RIPs are important biomedicine because they are highly

cytotoxic towards human cancer cells, including lym-
phoma and myeloma. RTA conjugated to monoclonal
antibodies anti-CD25 and anti-CD30 is being used to treat
Hodgkin’s lymphomas (10). Saporin is coupled to major
histocompatibility complex (MHC) class I tetramers to kill
antigen-specific CD8(+) T cells, which are important
effector cells responsible for tissue destruction in several
autoimmune and allograft-related diseases (11). TCS is
used to induce midterm abortion, treat ectopic pregnan-
cies and hydatidiform moles, reset menstruation and expel
retained placenta (12). TCS and PAP have also been
shown to possess anti-HIV activities (13).
Based on the number of subunits, RIPs are grouped

into two classes. Type I RIPs such as TCS and saporin
consist of a single polypeptide chain, with molecular
weight around 30 kDa. They are actively uptaken by the
alpha-2 macroglobulin receptor (a-2-MR) (14,15), which
is widely distributed in different cell types such as
macrophages, hepatocytes and follicular cells of the
ovary (16). Type II RIPs such as ricin and abrin consist
of two polypeptide chains linked by a disulphide bridge.
Chain A is the catalytic subunit sharing high structural
homology to type I RIPs, while chain B facilitates the
intracellular delivery of chain A by interacting with
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carbohydrates on the cell surface (2). Both type I and II
RIPs are basic proteins, with pI greater than 8. Maize RIP
is an unusual RIP, which is either classified as a type III
RIP (3) or considered as an atypical type I RIP (1). It is
synthesized as a 34 kDa acidic inactive precursor in
endosperm, with proper folding and a pI of around 6
(17). Its expression is controlled by the Opaque-2
regulatory locus (18). During germination, this precursor
is converted to a two-chain active form by the elimination
of 16 aa at the N-terminal region (residues 1–16), 25 aa at
the acidic central region (residues 163–189) and 14 aa at
the C-terminus (residues 287–300) to generate a two
subunit basic protein of 248 aa (19). The two subunits of
16.5 and 8.5 kDa are tightly associated without any
covalent linkage.
Among the sequences to be removed during the

activation of maize RIP, the 25 aa internal region
(known as internal inactivation region) is the most crucial,
as removal of this region increases the activity by at least
600-fold, whereas removal of the N- or C-terminal region
only increases the activity by 6- or 5-fold, respectively (17).
Deletion of the internal amino acid residues represents
a novel mechanism of enzyme activation in plants
and resembles processing of certain hormones, such as
insulin (3).
It is hypothesized that maize RIP can directly inhibit

pathogens by inactivating their ribosomes and causing
cell death (3). The active form is therefore a promising
anti-insect and anti-fungal agent. This form has been
overexpressed in transgenic rice, wheat and tobacco,
for increasing the resistance to plant insects such as
larvae of the cigarette beetle (Lasioderma serricorne),
the tobacco hornworm (Manduca sexta) and the corn
earworm (Helicoverpa zea) (20). Co-expression of the
active form and a rice basic chitinase gene in transgenic
rice has also led to increased resistance to sheath blight
(Rhizoctonia solani) (21).
To further understand how maize RIP functions, in

particular the relationship of the internal inactivation
region to the rest of the protein, and to provide the first
structural example of a type III RIP, we set forth to reveal
the structures of the active (MOD) and inactive forms
(Pro-RIP) of maize RIP and analyse the active site pocket.

MATERIALS AND METHODS

Preparation of protein samples

Maize [�1-16, �287-300]-Pro-RIP (Pro-RIP-WT in short)
and [�1-16, �163-164, �167-189, �287-300]-Pro-RIP
(MOD-WT in short) were obtained from Prof.
R.S. Boston. The numbering of the aa residues is made
according to Ref. (19). [�1-5]-Pro-RIP-WT (Pro-RIP),
[�1-5]-MOD-WT (MOD), [E207A]-MOD, [E207AV238E]-
MOD, [E207DV238E]-MOD and [V238E]-MOD were
generated by polymerase chain reaction mutagenesis
using overlapping primers and KOD DNA polymerase
(Novagen). A methionine residue was added to the
N-terminus as start codon. All concerned DNA were
cloned into pET3a expression vector and sequenced
to ensure that no secondary mutation had occurred.

Proteins were overexpressed in E. coli strain C41 (DE3)
(Novagen) in M9 medium (6 g/l Na2HPO4, 3 g/l KH2PO4,
1 g/l NH4Cl, 4 g/l glucose, 0.5 g/l NaCl, 100 mg/l ampicillin,
2mM MgSO4, 0.1mM CaCl2). Bacterial cells were grown
in 378C until OD 600 reached 0.4–0.6 and 0.4mM IPTG
was added to induce protein expression at 258C. The cells
were harvested after overnight culture by centrifugation at
48C. Cell pellet was resuspended and sonicated in 20mM
phosphate buffer, pH 7.0 (buffer A). Cell lysate was
collected by centrifugation at 48C and loaded onto a
HiTrap CM-FF column (Amersham) pre-equilibrated with
buffer A, and eluted using a gradient of 0–0.5M NaCl in
buffer A. Fractions containing the target protein were
pooled and dialyzed against buffer A, and loaded to
a HiTrap SP column (Amersham) pre-equilibrated with
buffer A. The protein was eluted using a gradient
of 0–0.5M NaCl in buffer A. Target fractions were
pooled and concentrated to 5ml for further purification
by Superdex 75 gel filtration column (Amersham),
which was pre-equilibrated with 20mM Tris–HCl, 0.1M
NaCl, pH 7.0. Purified protein was concentrated and
stored at �808C.

Purification of ribosomes from rat liver

Rat liver tissue of 250 g was used for ribosome purification
(22). In brief, the liver tissue was homogenized in ice-cold
homogenization buffer [50mM Tris–HCl (pH 7.6), 25mM
KCl, 5mMMgCl2, 0.25M sucrose] and was centrifuged at
13 000g for 30min. The supernatant was filtered through
glass wool and the filtrate was centrifuged at 145 000 g
for 2 h. The pellet was resuspended in a buffer containing
35mM Tris–HCl (pH 7.8), 25mM KCl, 10mM MgCl2,
0.15M sucrose and 6mM 2-mercaptoethanol. One-tenth
of the volume of a freshly prepared solution of 10%
sodium deoxycholate was added to release the ribosomes
from the microsomal membrane. The resultant suspension
was layered over an equal volume of 0.3M sucrose pad in
buffer B [35mM Tris–HCl (pH 7.8), 600mM KCl, 10mM
MgCl2, 6mM 2-mercaptoethanol] and then centrifuged at
176 000 g for 90min. The ribosomal pellet was rinsed and
resuspended in buffer C [50mM Tris–HCl (pH 7.8),
50mM KCl, 5mM MgCl2, 10mM KH2CO3, 0.25M
sucrose, 6mM 2-mercaptoethanol] to 7.5mg/ml.

Crystallization, data collection and data analysis

Crystals of Pro-RIP and MOD were grown by mixing
equal volume of protein solution and buffer in sitting drop
at 168C. The buffer used for Pro-RIP was 2M ammonium
sulphate, 0.25M Tris–HCl and 0.1M sodium acetate tri-
hydrate, pH 3.5. The buffer for MOD was 0.2M sodium
acetate tri-hydrate, 0.1M Tris–HCl pH 8.5 and 30%
PEG 4000. MOD-Adenine crystal complex was obtained
by soaking MOD crystals in the mother liquid containing
saturated adenine for 72 h. Diffraction data of Pro-RIP
and MOD were collected at 110K using an in-house
Rigaku MicroMax 007 X-ray generator and the synchro-
tron 6B beamline at Pohang Accelerator Laboratory,
Pohang, Korea. Diffraction data were processed
by MOSFLM. Phase determination was carried out
by molecular replacement using MolRep of the CCP4
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program suite. Structure of ricin A chain (PDB ID : 1RTC)
with the side chains first eliminated by the Align4MR
program (23) was used as the search model for Pro-RIP.
For MOD, the refined Pro-RIP with the internal fragment
deleted was used as the search model. The starting model
was subject to rigid refinement using CNS and model
building was carried out by XtalView. Further refinement
was also achieved by CNS. Adenine and water molecules
were added after the rest of the structure was well refined.
Water molecules with Sigma values less than 1.0 in the
2Fo�Fc map were excluded. The stereochemical quality of
the model was assessed by PROCHECK (24).

Ribosome-inactivating activity assay

The ribosome-inactivating activity assay was carried out
using a rabbit reticulocyte lysate in vitro protein synthesis
system, with L-[3, 4, 5-3H (N)]-leucine as label (NEN Life
Science Products). In brief, 0.1 pM to 10 mM proteins and
5 nCi [3H]-leucine were incubated with the translation
system in triplicate at 308C for 30min. Newly synthesized
protein was precipitated with 25% trichloroacetic acid and
captured by filtration through glass microfibre filters
(Whatman).

Cytotoxicity assay ofMOD and Pro-RIP

MTT assay was performed on human choriocarcinoma
JAR cell line. In brief, JAR cells were treated with Pro-
RIP or MOD for 72 h followed by incubation with MTT
(5mg/ml) for 4 h. DMSO was then added and OD595

values were measured using a colorimetric microplate
reader (Model 3550, Biorad). The result was presented in
terms of percentage to control as mean�SEM. Two-way
ANOVA with Bonferroni test as the post hoc test for
multiple comparisons was used to compare cell viability
after treatment with Pro-RIP and MOD.

Flow cytometry assay

JAR cells were seeded in a six-well plate (3� 106 cells/well).
Pro-RIP and MOD were labelled by green fluorescence
dye F1640 (Roche) and incubated with the cells for 4 h.
The cells were harvested and analysed by flow cytometry
(BD biosciences). Uptake of the Pro-RIP and MOD was
presented as mean� SEM of percentage to control. One-
way ANOVA with Dunnett’s Multiple Comparison Test
was used to assess the significance of protein uptake as
compared to the dye control.

Pull-down assay

Pull-down assay was carried out to find the interaction
between maize RIP and purified rat ribosomes. In brief,
Pro-RIP and MOD columns were prepared by immobiliz-
ing purified Pro-RIP or MOD to a 1ml NHS-column
(Amersham). Then purified ribosomes were loaded
onto the columns. Unbound protein was washed away
by 30ml PBS (1mM KH2PO4, 10mM Na2HPO4, 137mM
NaCl, 2.7mM KCl, 0.005% Tween 20, pH 7.4), followed
by elution buffer (1M NaCl in PBS, pH 8.0) to elute
the bound proteins. The eluted fractions were analysed

by 15% SDS–PAGE. Control experiment was carried out
by loading the ribosomes onto uncoupled NHS-Sepharose.

Binding kinetic assay using surface plasmon resonance

BIAcore 3000 surface plasmon resonance biosensor
(Pharmacia Biosensor AB) was used to measure the
kinetic parameters of the interaction. Pro-RIP or MOD
(1 nM) in 10mM sodium acetate, pH 5.0 was covalently
linked to the dextran on the surface of CM5 sensor chip
via primary amino groups using the Amine Coupling Kit
(Pharmacia) at a flow rate of 5 ml/min, 258C. A range of
0–240 nM of ribosomes in PBS were injected at a flow rate
of 5 ml/min, 258C, onto the RIP immobilized sensor chip
surface. The binding surface was regenerated by 2M NaCl
between sample injections. Control experiment was
carried out similarly on uncoupled sensor chip surface.

Molecular modelling of maize RIP–ribosome complex

The coordinates of yeast ribosome were derived from the
cryo-EM structure (PDB ID: 1S1H and 1S1I). The
adenine ring of A-2697 (analogous to A-4324 in rat 28S
rRNA) was positioned manually to the adenine-binding
site of MOD. Pro-RIP was then superimposed to MOD.
The model was energy minimized using the program CNS.

RESULTS

Protein purification and crystallization

Pro-RIP and MOD were purified, with purities greater
than 95% and the usual yield was 50mg/l culture. Variant
[E207AV238E]-MOD had the lowest yield but still
reached 20mg/l culture. Crystals of Pro-RIP, MOD and
MOD-adenine complex were obtained. The cell param-
eters and data collection statistics are shown in Table 1.
The structures of Pro-RIP (PDB ID: 2PQG), MOD

(PDB ID: 2PQI) and MOD–adenine (PDB ID: 2PQJ)
were resolved to 2.4, 2.5 and 2.8 Å, respectively. Phase
determination was carried out by molecular replacement.
The refinement statistics are shown in Table 1. Crystals of
MOD belong to space group P3(2), with three molecules
per asymmetric unit. After refinement, the final Rwork and
Rfree values were 0.2188 and 0.2635, respectively. The
structure shows a large N-terminal domain (aa 21–230,
aa 21 is an added methionine) and a small C-terminal
domain (aa 231–283). The former consists of five a-helices
and five-stranded mixed b-sheets; the latter is made up of
four a-helices. M21-F27 in MOD is flexible. It exists as a
b-strand in chain C but shows no secondary structure in
chains A and B (Figure 1). For the MOD crystals soaked
in saturated adenine solution, electron density consistent
to an adenine molecule was found in the active site of the
protein. The space group remained P3(2) and no major
structural change was observed. The final Rwork and Rfree

values were 0.2319 and 0.2934, respectively.
The crystals of Pro-RIP belong to space group P2(1)

with two monomers per asymmetric unit. The final Rwork

and Rfree values were 0.2114 and 0.2299, respectively. The
overall structures of Pro-RIP and MOD are very similar,
except the presence of a unique internal inactivating
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region Ala163–Asp189 in Pro-RIP (Figure 1), which is
rich in acidic residues. Clear electron densities were
observed in flexible loop regions Ala163–Val170 and
Pro177–Ala179, and a long a-helix in Ala180–Ala188.
When aligned to type I and type II RIPs, maize RIP
showed some significant structural differences (Figure 1).

There are no a-helix B and b-strand 6 (purple) in the
large domain and the anti-parallel b-strands 7 and 8 in the
small domain of other RIPs (purple) are replaced by a
short a-helix.

Construction ofMOD variants and ribosome-inactivating
activity assay

[E207A]-MOD, [E207AV238E]-MOD, [E207DV238E]-
MOD and [V238E]-MOD were constructed and expressed
in E. coli. [E207A]-MOD and [E207AV238E]-MOD were
soluble and purified. On the other hand, [E207DV238E]-
MOD and [V238E]-MOD formed inclusion bodies. The
purified proteins were assayed for ribosome-inactivating
activity. Percentage inhibition of protein synthesis could
be fitted to sigmoidal curves (Figure 2), indicating
concentration-dependent inhibition. MOD exhibited the
highest protein-synthesis inhibition activity whereas
Pro-RIP had the least. Compared to the wild-type
MOD, the activity of [E207A]-MOD decreased by about
556-fold. Variant [E207AV238E]-MOD was 9-fold more
active than [E207A]-MOD.

Cytotoxicity and cellular uptake ofMOD and Pro-RIP

The cytotoxicities of Pro-RIP and MOD to choriocarci-
noma JAR cells were evaluated by MTT assay. MOD was
found to be more effective in reducing the viability of
JAR (IC50=0.37mM) when compared to Pro-RIP
(IC50> 40 mM) (Figure 3A).

Uptake of Pro-RIP and MOD by JAR cells was
analysed by flow cytometry. JAR cells were incubated
with protein labelled fluorescent dye F1640 (Roche) for
4 h. It was found that both Pro-RIP and MOD entered
JAR cells with similar efficiency (Figure 3B).

Figure 1. Structures of Pro-RIP and MOD and their comparison to
TCS, PAP and RTA. The overall structures of Pro-RIP and MOD,
except the unique inactivating region Ala163–Asp189 in Pro-RIP (red),
are similar. Pro-RIP and MOD have a large N-terminal and a small
C-terminal domain. In the MOD structure, b-strand 1 (blue) is present
in chain C but not chain A or B. The a-helix B and b-strand 6 (purple)
found in the large domain of other RIPs are absent in Pro-RIP and
MOD. The anti-parallel b-strands 7 and 8 in the small domain of other
RIPs (purple) are replaced by a short a-helix I.

Table 1. Data collection and refinement statistics

Pro-RIP MOD MOD–adenine

Data collection

Resolution range (Å) 30.0–2.38 20.0–2.5 44.9–2.8
Space group P2(1) P3(2) P3(2)
Unit cell a, b, c (Å) 39.23, 75.62, 97.15 115.19, 115.19, 45.00 115.91, 115.91, 44.90
a, b, g (deg) 90, 93.725, 90 90, 90, 120 90, 90, 120
Total number of observation 55 918 51 970 31 580
Total number of unique 19 282 21 654 16 621
Completeness (%) 84.1 (70.6)a 93.9 (90.1) 99.9 (99.9)
Rmerge 0.118 (0.342) 0.031 (0.153) 0.073 (0.338)
<I>/s (I) 7.1 (1.6) 22.2 (4.1) 11.2 (1.8)
Multiplicity 2.9 (2.1) 2.4 (2.0) 2.0 (1.9)

Refinement statistics

Rwork/Rfree 0.2114/0.2299 0.2188/0.2635 0.2319/0.2934
RMSD bonds/angles (Å/deg) 0.010026/1.80921 0.007964/1.45764 0.009768/1.59545
Overall Mean B (Å2) 30.746 47.899 62.895
Chain A Mean B (Å2) 30.618 34.758 56.537

Ramachandran plot (%)

Most favoured regions [A,B,L] 89.4 87 87.1
Additional allowed regions [a,b,l,p] 10.6 13 12.3
Generously allowed regions [�a,�b,�l,�p] 0 0 0.8
Disallowed regions [XX] 0 0 0

aHighest resolution shell is shown in parenthesis.
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Protein–protein interaction and molecular modelling
of maize RIP–ribosome complex

Pull-down assays were carried out to study the interaction
between the two forms of maize RIP and purified rat
ribosomes. MOD and Pro-RIP were coupled to NHS
Hi-Trap columns, with efficiencies of 85–90%. Purified rat
ribosomes were loaded onto the two RIP-coupled NHS
columns, which were then washed by PBS. The bound
ribosomes were eluted and analysed by SDS–PAGE. Our
results showed that only MOD, but not Pro-RIP interacts
with ribosomes (Figure 4A). Rat ribosomes did not
interact with uncoupled NHS column.

A BIAcore 3000 surface plasmon resonance biosensor
(Pharmacia Biosensor AB) was used to study the kinetic
parameters of the interaction. 5100 RU of Pro-RIP and
5200 RU of MOD were coupled onto the surface of CM5
sensor chips via primary amide groups. When 60 nM of
purified rat ribosomes at 5 ml/min were loaded onto the
RIP-coupled CM5 sensor chips, both association and
dissociation responses of MOD were higher than those of
Pro-RIP. Within a 240 s window, the association signal
rapidly reached 105 RU with a slow dissociation ended at
60 RU. On the contrary, Pro-RIP associated slowly to
40 RU and dissociated sharply to 10 RU (Figure 4B).
Control experiment was carried out similarly on uncoupled

sensor chip surface. To determine the binding affinity (KD)
of the ribosomes to MOD and Pro-RIP, ribosomes of
different concentrations were allowed to interact with the
maize RIP-immobilized sensor chip surface. The KD values
of MOD and Pro-RIP were 6.33� 0.73 and
500� 46.20 nM, respectively. The 80-fold decrease of
binding affinity of Pro-RIP was due to the slower
association rate and faster dissociation rate.
In silico docking of Pro-RIP to yeast ribosome showed

that if the adenine ring of A-2697 (analogous to A-4324 of
rat 28S rRNA) is placed properly into the active site
pocket, the internal inactivation region would clash with
A1174-C1179, G1195-A1220 and G2507-A2511 of the 25S
rRNA (Figure 5). Therefore, this region of Pro-RIP
probably sterically hinders the interaction of the protein
with the ribosome.

DISCUSSION

Maize RIP represents a unique class of RIP. It has a
prominent internal acidic region spanning Ala163–Asp189,

Figure 3. (A) Cytotoxicity assays of Pro-RIP and MOD to JAR cells.
Cytotoxicity is expressed as percentage to control in terms of mean �

SEM. The difference in cell viability under the same concentration of
Pro-RIP and MOD is statistically significant (P< 0.05, n=5).
(B) Uptake of Pro-RIP and MOD by JAR cells as measured by flow
cytometry. Proteins were labelled by green fluorescence dye F1640
(Roche) and incubated with JAR cells for 4 h. Uptake of the two
proteins was significant as compared to the control experiment where
only the dye was incubated with the cells (P< 0.05, n=3).

Figure 2. Inhibition of in vitro protein synthesis by maize RIP variants.
The potency of maize RIP variants to inhibit in vitro protein synthesis
was measured by adding 1 pM to 10 mM of protein samples to nuclease-
untreated rabbit reticulocyte lysate as described in Materials and
Methods section. IC50, the concentration of protein required to achieve
50% inhibition, was determined by fitting the data to a four-parameter
logistic equation (n=5).
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which is absent in type I and type II RIPs. Previously, it
was predicted that the internal acidic region would alter
the arrangement of key residues in the active-site cleft or
disrupt protein folding, thus affecting the catalytic
activity (25). To shed light on its biochemical function,
we set out to elucidate the structures of Pro-RIP
and MOD.

Secondary structure analysis of MOD-WT and Pro-
RIP-WT by nnPredict program (26) showed that the
N-terminal 5 aa is a flexible loop and crystallization of
MOD and Pro-RIP was only achieved by deleting these 5
aa (data not shown). The overall structures of Pro-RIP
and MOD are very similar, except the presence of the
internal inactivation region Ala163–Asp189 in Pro-RIP
(Figure 1). Each protein has two domains, consisting of
five a-helices and five-stranded mixed b-sheet in the large
N-terminal domain. The small C-terminal domain is
composed of four a-helices, with a bend between helices
G and H. This helical bend is conserved among RIPs. The
conserved active site residues Tyr94, Tyr130, Glu207,
Arg210 and Trp241 are located at the cleft between the
N-terminal and C-terminal domains. The tyrosine rings of
Tyr94 and Tyr130 in MOD are facing each other, which
may facilitate the insertion of A-4324 adenine ring of 28S
RNA. In Pro-RIP, the tyrosine ring of Tyr94 assumes a
different conformation. It flips towards the adenine-
binding site such that it becomes perpendicular to the
ring of Tyr130, with its hydroxyl group hydrogen-bonded
to the carboxyl group of Gly128 (Figure 6A). RIPs in
Family Poaceae have more tryptophan residues than those
in other families. In maize RIP, there are a total of six
tryptophan residues of which only Trp241 in the active site

Figure 5. Docking of Pro-RIP to yeast ribosome. The adenine ring of
A-2697 in the a-sarcin/ricin loop (analogous to A-4324 in rat 28S
rRNA) is shown in pink. The internal inactivating region is coloured in
red and the rest of Pro-RIP is coloured in green. As indicated, the
internal inactivating region of Pro-RIP clashes into at least three sites
of the 25S rRNA.

Figure 4. Interaction of maize RIP and eukaryotic ribosomes in vitro.
(A) 100 nM of purified rat ribosomes were loaded onto the indicated
columns. After washing away the unbound ribosomes, the bound
ribosome was eluted and analysed by 15% SDS–PAGE. Loading
denotes ribosomes before interaction. �ve control denotes ribosomes
loaded onto uncoupled NHS column. (B) 60 nM of purified rat
ribosomes were loaded onto the MOD-coupled or Pro-RIP-coupled
CM5 sensor chip. The kinetic rates and dissociation constants of the
interaction between maize RIP and rat ribosomes were analysed by
BIAcore 3000 biosensor.
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is conserved. The only two cysteine residues (Cys51 and
Cys206) of maize RIP are 14.37 Å apart, without
disulphide-bond linkage.

The overall root mean square deviation (RMSD)
among the structures of TCS, PAP, RTA and SO6 is
0.755. However, the value increases to 1.516 when MOD

is included, suggesting that maize RIP is more structurally
distinct. Compared to other RIPs, the a-helix B and
b-strand 6 in the large domain are missing in MOD, and
the anti-parallel b-strands 7 and 8 in the small domain are
replaced by a short a-helix (Figure 1). These structural
differences, nevertheless, do not significantly diminish the
ability of MOD to inhibit protein synthesis in vitro,
implying that the variable regions are not crucial for the
enzymatic activity. In Pro-RIP, the internal inactivating
region Ala163–Asp189 is very rich in acidic residues. Our
structure shows that the internal inactivating region
consists of a flexible loop (Ala163–Ala179) and a long
a-helix (Ala180–Ala188) (Figure 1). Since this fragment is
located on the protein surface and is 15.5 Å away from the
active site, the conformation of the protein and the active-
site cleft should not be affected.
At the C-terminal region, the hydrogen bonds Val280N

to Pro60 O and Val280 O to Leu62N are conserved
among RIPs. In TCS, the corresponding hydrogen bonds
are Leu240N to Pro35 O and Leu 240 O to Leu37N.
Deletion of these hydrogen bonds has been shown to
disrupt the folding of TCS. Therefore, the C-terminal
region in TCS can only be deleted up to Leu240 for an
active variant (27). It will be of interest to investigate if the
hydrogen bonds orchestrated by Val280 also play a role in
the folding of Pro-RIP and MOD.
Our biochemical studies showed that the presence of the

internal inactivation region in Pro-RIP affects the
cytotoxicity but not the uptake to JAR cells (Figure 3A
and B). Pull-down assay indicated that MOD, but not
Pro-RIP, interacts with rat ribosomes (Figure 4A).
Surface plasmon resonance analysis also showed that the
binding affinity (KD) of Pro-RIP is about 80-fold higher
than that of MOD (Figure 4B). These indicated that the
internal inactivation region of Pro-RIP might obstruct the
protein to dock onto the ribosome. Indeed, in silico
docking of Pro-RIP to yeast ribosome showed that the
internal inactivation region clashes with multiple sites of
the 25S rRNA (Figure 5). It has been reported that the
inhibitory activity of Pro-RIP on maize ribosomes is lower
than that of MOD (28). Therefore, the internal inactiva-
tion region may serve the purpose of preventing the maize
RIP from attacking its cognate ribosomes in vivo.
In TCS and saporin, the ribosome-binding sites are

located between the anti-parallel b-sheets 7 and 8 in the
C-terminal domain (5,29). Since the corresponding region
in Pro-RIP is replaced by a short alpha-helix, and the
internal inactivation region is located on the surface of
helices D and E in the N-terminal domain, we predict that
the ribosome interaction site on maize RIP may be
different from that of TCS and saporin.
In the active sites of many RIPs of dicotyledonous

plants, there are two glutamate residues. The carboxyl
group of one of the glutamate residues stabilizes the
oxocarbenium ion-like transition state. The other gluta-
mate residue serves as a backup when the catalytic
glutamate is mutated (30,31). Interestingly, in the active
site pocket of Pro-RIP and MOD, only one glutamate
residue (Glu207) is found. The residue corresponds to the
backup glutamate that has turned into valine (Val238).
This phenomenon is also observed in other known RIPs

Figure 6. (A) Active site pockets of Pro-RIP and MOD-adenine
complex. The structure of Pro-RIP was aligned to that of the MOD-
adenine complex. The adenine is coloured in pink and with Tyr94 of
MOD and Pro-RIP in green and yellow, respectively. In Pro-RIP, the
ring of Tyr94 has flipped towards the adenine-binding site and forms
hydrogen bond with Gly128. (B) Comparison of the size of the active
site pocket in MOD (green) and TCS (blue). As indicated by black
dotted lines, Ile134-Met144 and Gln225-Thr231 in MOD are found to
bend towards the active site. As a result, the space surrounding Val238
is too small for the side chain of a glutamate residue. Hydrogen bonds
are indicated by red dotted lines.
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of the Family Poaceae, such as rice RIP (GenBank:
BAB85659) and JIP60 (GenBank: AAB33361). This raises
the puzzle of the absence of the backup glutamate in these
RIPs. We found that the ribosome-inactivating activity of
[E207A]-MOD decreased by about 556-fold (Figure 2),
confirming the importance of this residue. Variants
[V238E]-MOD and [E207D-V238E]-MOD were expressed
as inclusion bodies, showing the existence of two long side
chains in the active site disrupts the folding and/or
structure of the protein. On the other hand, the variant
[E207AV238E]-MOD was soluble and regained partial
ribosome-inactivating activity, indicating that a glutamate
residue may be placed in position 238 as a backup for
improving the activity.
Compared to other RIPs, the main chains of Ile134-

Met144 and Gln225-Thr231 of maize RIP exhibit some
significant structural differences. With reference to TCS,
these two chains have shifted 3.67 and 3.74 Å inward,
respectively (Figure 6B). In maize RIP, a-helix C (Tyr130-
Ile134) is shorter, due to the presence of Gly135 as an
a-helix C-cap terminator (32). The hydrogen bond
between Ile134 O and Lys137N ensures an inward shift
of the fragment Ile134-Met144. Moreover, the hydrogen
bonds between Met144 O and Val228N and Met144N
and Val228 O result in a tight packing of Gln225-Thr231
towards the active site. As a result, the active-site pocket
becomes too small to accommodate an extra glutamate
residue. Molecular modelling indicated that if Val238 is
mutated to glutamate, Glu238 would clash with the side
chain of Leu139 and Leu230 (Supplementary Figure 1A).
This is consistent with our finding that MOD variant
V238E expressed as inclusion bodies. Furthermore, maize
RIP is not prepared to have a glutamate residue in
position 238. In TCS, the corresponding Glu189 is
stabilized by Arg122 and Gln156 (Supplementary
Figure 1B). On the other hand, the latter 2 aa have
become Leu139 and Val203 in maize RIP (Supplementary
Figure 1C).
Interestingly, known bacterial RIPs including Shiga

toxin have only one catalytic glutamate in the active site
(Supplementary Figure 1D). In Shiga toxin, the position
for the backup glutamate is occupied by Thr200. Previous
phylogenetic analysis of representative plant and bacterial
RIPs has indicated that maize RIP is more related to the
latter (33). Hence, it is likely that RIPs having one
catalytic glutamate presents a prototype that acquires a
second glutamate residue in the active site during
evolution.
In conclusion, we have solved the crystal structures of

Pro-RIP and MOD, the precursor and the mature form of
maize RIP. Our data reveal the structural and functional
differences of the two forms and the role of the internal
inactivation region for its biological activities. The
structure of the active-site pocket also indicates that
maize RIP may be an intermediate step of evolution from
prokaryotes to higher plants.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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