66 research outputs found

    Design and validation of a three-instrument toolkit for the assessment of competence in electrocardiogram rhythm recognition

    Get PDF
    Background: Rapid and accurate interpretation of cardiac arrhythmias by nurses has been linked with safe practice and positive patient outcomes. Although training in electrocardiogram (ECG) rhythm recognition is part of most undergraduate nursing programmes, research continues to suggest that nurses and nursing students lack competence in recognising cardiac rhythms. In order to promote patient safety, nursing educators must develop valid and reliable assessment tools that allow the rigorous assessment of this competence before nursing students are allowed to practise without supervision. Aim: To develop and psychometrically evaluate a toolkit to holistically assess competence in ECG rhythm recognition. Methods: Following a convenience sampling technique, 293 nursing students from a nursing faculty in a Spanish university were recruited for the study. The following three instruments were developed and psychometrically tested: a knowledge assessment tool (ECG-KAT), a skills assessment tool (ECG-SAT) and a self-efficacy assessment tool (ECG-SES). Reliability and validity (content, criterion and construct) of these tools were meticulously examined. Results: A high Cronbach’s alpha coefficient demonstrated the excellent reliability of the instruments (ECG-KAT=0.89; ECG-SAT=0.93; ECG-SES=0.98). An excellent context validity index (S-CVI/Ave>0.94) and very good criterion validity were evidenced for all the tools. Regarding construct validity, principal component analysis revealed that all items comprising the instruments contributed to measure knowledge, skills or self-efficacy in ECG rhythm recognition. Moreover, known-groups analysis showed the tools’ ability to detect expected differences in competence between groups with different training experiences. Conclusion: The three-instrument toolkit developed showed excellent psychometric properties for measuring competence in ECG rhythm recognition

    A candidate gene approach identifies an IL33 genetic variant as a novel genetic risk factor for GCA

    Get PDF
    INTRODUCTION: Increased expression of IL-33 and its receptor ST2, encoded by the IL1RL1 gene, has been detected in the inflamed arteries of giant cell arteritis (GCA) patients. The aim of the present study was to investigate for the first time the potential influence of the IL33 and IL1RL1 loci on GCA predisposition. METHODS: A total of 1,363 biopsy-proven GCA patients and 3,908 healthy controls from four European cohorts (Spain, Italy, Germany and Norway) were combined in a meta-analysis. Six genetic variants: rs3939286, rs7025417 and rs7044343, within the IL33 gene, and rs2058660, rs2310173 and rs13015714, within the IL1RL1 gene, previously associated with immune-related diseases, were genotyped using predesigned TaqMan assays. RESULTS: A consistent association between the rs7025417 polymorphism and GCA was evident in the overall meta-analysis, under both allele (P(MH) = 0.041, OR = 0.88, CI 95% 0.78-0.99) and recessive (P(MH) = 3.40E-03, OR = 0.53, CI 95% 0.35-0.80) models. No statistically significant differences between allele or genotype frequencies for the other IL33 and IL1RL1 genetic variants were detected in this pooled analysis. CONCLUSIONS: Our results clearly evidenced the implication of the IL33 rs7025417 polymorphism in the genetic network underlying GCA

    The Ontogenetic Osteohistology of Tenontosaurus tilletti

    Get PDF
    Tenontosaurus tilletti is an ornithopod dinosaur known from the Early Cretaceous (Aptian-Albian) Cloverly and Antlers formations of the Western United States. It is represented by a large number of specimens spanning a number of ontogenetic stages, and these specimens have been collected across a wide geographic range (from central Montana to southern Oklahoma). Here I describe the long bone histology of T. tilletti and discuss histological variation at the individual, ontogenetic and geographic levels. The ontogenetic pattern of bone histology in T. tilletti is similar to that of other dinosaurs, reflecting extremely rapid growth early in life, and sustained rapid growth through sub-adult ontogeny. But unlike other iguanodontians, this dinosaur shows an extended multi-year period of slow growth as skeletal maturity approached. Evidence of termination of growth (e.g., an external fundamental system) is observed in only the largest individuals, although other histological signals in only slightly smaller specimens suggest a substantial slowing of growth later in life. Histological differences in the amount of remodeling and the number of lines of arrested growth varied among elements within individuals, but bone histology was conservative across sampled individuals of the species, despite known paleoenvironmental differences between the Antlers and Cloverly formations. The bone histology of T. tilletti indicates a much slower growth trajectory than observed for other iguanodontians (e.g., hadrosaurids), suggesting that those taxa reached much larger sizes than Tenontosaurus in a shorter time

    Non-capsulated and capsulated Haemophilus influenzae in children with acute otitis media in Venezuela: a prospective epidemiological study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Non-typeable <it>Haemophilus influenzae </it>(NTHi) and <it>Streptococcus pneumoniae </it>are major causes of bacterial acute otitis media (AOM). Data regarding AOM are limited in Latin America. This is the first active surveillance in a private setting in Venezuela to characterize the bacterial etiology of AOM in children < 5 years of age.</p> <p>Methods</p> <p>Between December 2008 and December 2009, 91 AOM episodes (including sporadic, recurrent and treatment failures) were studied in 87 children enrolled into a medical center in Caracas, Venezuela. Middle ear fluid samples were collected either by tympanocentesis or spontaneous otorrhea swab sampling method. Standard laboratory and microbiological techniques were used to identify bacteria and test for antimicrobial resistance. The results were interpreted according to Clinical Laboratory Standards Institute (CLSI) 2009 for non-meningitis isolates. All statistical analyses were performed using SAS 9.1 and Microsoft Excel (for graphical purposes).</p> <p>Results</p> <p>Overall, bacteria were cultured from 69.2% (63 of the 91 episodes); at least one pathogen (<it>S. pneumoniae, H. influenzae, S. pyogenes </it>or <it>M. catarrhalis</it>) was cultured from 65.9% (60/91) of episodes. <it>H. influenzae </it>(55.5%; 35/63 episodes) and <it>S. pneumoniae </it>(34.9%; 22/63 episodes) were the most frequently reported bacteria. Among <it>H. influenzae </it>isolates, 62.9% (22/35 episodes) were non-capsulated (NTHi) and 31.4% (11/35 episodes) were capsulated including types d, a, c and f, across all age groups. Low antibiotic resistance for <it>H. influenzae </it>was observed to amoxicillin/ampicillin (5.7%; 2/35 samples). NTHi was isolated in four of the six <it>H. influenzae </it>positive samples (66.7%) from recurrent episodes.</p> <p>Conclusions</p> <p>We found <it>H. influenzae </it>and <it>S. pneumoniae </it>to be the main pathogens causing AOM in Venezuela. Pneumococcal conjugate vaccines with efficacy against these bacterial pathogens may have the potential to maximize protection against AOM.</p

    The 5S rDNA family evolves through concerted and birth-and-death evolution in fish genomes: an example from freshwater stingrays

    Get PDF
    Background: Ribosomal 5S genes are well known for the critical role they play in ribosome folding and functionality. These genes are thought to evolve in a concerted fashion, with high rates of homogenization of gene copies. However, the majority of previous analyses regarding the evolutionary process of rDNA repeats were conducted in invertebrates and plants. Studies have also been conducted on vertebrates, but these analyses were usually restricted to the 18S, 5.8S and 28S rRNA genes. The recent identification of divergent 5S rRNA gene paralogs in the genomes of elasmobranches and teleost fishes indicate that the eukaryotic 5S rRNA gene family has a more complex genomic organization than previously thought. The availability of new sequence data from lower vertebrates such as teleosts and elasmobranches enables an enhanced evolutionary characterization of 5S rDNA among vertebrates.Results: We identified two variant classes of 5S rDNA sequences in the genomes of Potamotrygonidae stingrays, similar to the genomes of other vertebrates. One class of 5S rRNA genes was shared only by elasmobranches. A broad comparative survey among 100 vertebrate species suggests that the 5S rRNA gene variants in fishes originated from rounds of genome duplication. These variants were then maintained or eliminated by birth-and-death mechanisms, under intense purifying selection. Clustered multiple copies of 5S rDNA variants could have arisen due to unequal crossing over mechanisms. Simultaneously, the distinct genome clusters were independently homogenized, resulting in the maintenance of clusters of highly similar repeats through concerted evolution.Conclusions: We believe that 5S rDNA molecular evolution in fish genomes is driven by a mixed mechanism that integrates birth-and-death and concerted evolution

    Biased-corrected richness estimates for the Amazonian tree flora

    Get PDF
    Amazonian forests are extraordinarily diverse, but the estimated species richness is very much debated. Here, we apply an ensemble of parametric estimators and a novel technique that includes conspecific spatial aggregation to an extended database of forest plots with up-to-date taxonomy. We show that the species abundance distribution of Amazonia is best approximated by a logseries with aggregated individuals, where aggregation increases with rarity. By averaging several methods to estimate total richness, we confirm that over 15,000 tree species are expected to occur in Amazonia. We also show that using ten times the number of plots would result in an increase to just ~50% of those 15,000 estimated species. To get a more complete sample of all tree species, rigorous field campaigns may be needed but the number of trees in Amazonia will remain an estimate for years to come

    Geographic patterns of tree dispersal modes in Amazonia and their ecological correlates

    Get PDF
    This is the final version. Available on open access from Wiley via the DOI in this recordData availability statement: The percentages of dispersal modes per plot are included as Supporting Information (Table S7, based on 5433 species and morphospecies within 1877 tree-inventory plots across terra-firme, seasonally flooded, and permanently flooded forests in Amazonia). The dispersal modes assigned to these 5433 species and morphospecies are also included as Supporting Information (Table S8).Aim: To investigate the geographic patterns and ecological correlates in the geographic distribution of the most common tree dispersal modes in Amazonia (endozoochory, synzoochory, anemochory and hydrochory). We examined if the proportional abundance of these dispersal modes could be explained by the availability of dispersal agents (disperser-availability hypothesis) and/or the availability of resources for constructing zoochorous fruits (resource-availability hypothesis). Time period: Tree-inventory plots established between 1934 and 2019. Major taxa studied: Trees with a diameter at breast height (DBH) ≥ 9.55 cm. Location: Amazonia, here defined as the lowland rain forests of the Amazon River basin and the Guiana Shield. Methods: We assigned dispersal modes to a total of 5433 species and morphospecies within 1877 tree-inventory plots across terra-firme, seasonally flooded, and permanently flooded forests. We investigated geographic patterns in the proportional abundance of dispersal modes. We performed an abundance-weighted mean pairwise distance (MPD) test and fit generalized linear models (GLMs) to explain the geographic distribution of dispersal modes. Results: Anemochory was significantly, positively associated with mean annual wind speed, and hydrochory was significantly higher in flooded forests. Dispersal modes did not consistently show significant associations with the availability of resources for constructing zoochorous fruits. A lower dissimilarity in dispersal modes, resulting from a higher dominance of endozoochory, occurred in terra-firme forests (excluding podzols) compared to flooded forests. Main conclusions: The disperser-availability hypothesis was well supported for abiotic dispersal modes (anemochory and hydrochory). The availability of resources for constructing zoochorous fruits seems an unlikely explanation for the distribution of dispersal modes in Amazonia. The association between frugivores and the proportional abundance of zoochory requires further research, as tree recruitment not only depends on dispersal vectors but also on conditions that favour or limit seedling recruitment across forest types.Colombian institution Departamento Administrativo de Ciencia, Tecnología e Innovación COLCIENCIASFaculty of Sciences, Universidad de los Ande

    Consistent patterns of common species across tropical tree communities

    Get PDF
    Trees structure the Earth’s most biodiverse ecosystem, tropical forests. The vast number of tree species presents a formidable challenge to understanding these forests, including their response to environmental change, as very little is known about most tropical tree species. A focus on the common species may circumvent this challenge. Here we investigate abundance patterns of common tree species using inventory data on 1,003,805 trees with trunk diameters of at least 10 cm across 1,568 locations 1–6 in closed-canopy, structurally intact old-growth tropical forests in Africa, Amazonia and Southeast Asia. We estimate that 2.2%, 2.2% and 2.3% of species comprise 50% of the tropical trees in these regions, respectively. Extrapolating across all closed-canopy tropical forests, we estimate that just 1,053 species comprise half of Earth’s 800 billion tropical trees with trunk diameters of at least 10 cm. Despite differing biogeographic, climatic and anthropogenic histories 7, we find notably consistent patterns of common species and species abundance distributions across the continents. This suggests that fundamental mechanisms of tree community assembly may apply to all tropical forests. Resampling analyses show that the most common species are likely to belong to a manageable list of known species, enabling targeted efforts to understand their ecology. Although they do not detract from the importance of rare species, our results open new opportunities to understand the world’s most diverse forests, including modelling their response to environmental change, by focusing on the common species that constitute the majority of their trees
    corecore