352 research outputs found

    On the Input-Output Distinguishability of Single Output Continuous Linear Time-Invariant Systems

    Get PDF
    International audienc

    An evaluation of Wb123 antibody elisa in individuals treated with ivermectin and albendazole, and implementation challenges in Africa

    Get PDF
    The development of antibody testing for the diagnosis of lymphatic filariasis (LF) is intended to enhance the monitoring and evaluation activities of the Global Program for the Elimination of LF. This is due to the fact that antibody tests are expected to be the most sensitive at detecting exposure to LF compared to antigen that takes longer to develop. To this end a new antibody-based enzyme linked immunosorbent assay (ELISA) to Wuchereria bancrofti antigen Wb123 has been developed and further designed into a point of care rapid diagnostic test, under evaluation. In pretreatment surveys, individuals were tested for antigen using the immuno-chromatographic test (ICT) card, and night blood microfilariae, after which all positives were treated using Ivermectin and Albendazole. The Wb123 ELISA was tested in antigen positive individuals, three months after they were treated. Samples were also tested for ICT and night blood microfilariae. The results revealed a reduction in microfilariae and ICT prevalence after treatment. Antigen and antibody prevalence increased with age. However, there was no correlation with the antibody responses observed. The mean WB123 antibody titers were higher among ICT positives, but not significantly different from ICT negative persons. While the Wb123 is targeted for use in untreated populations, further evaluations and guidelines will be required to define its use in populations that have undergone treatment for the control of LF.Keywords: Lymphatic filariasis, elephantiasis, antigen, antibody, Wb123, Ghan

    The epidemiology of lymphatic filariasis in Ghana, explained by the possible existence of two strains of Wuchereria bancrofti

    Get PDF
    Introduction Lymphatic filariasis is a debilitating disease caused by the filarial worm Wuchereria bancrofti. It is earmarked for elimination by the year 2020 through the Global Program for the Elimination of LF (GPELF). In Ghana, mass treatment has been on-going since the year 2000. Earlier studies have revealed differing epidemiology of LF in the North and South of Ghana. This study was therefore aimed at understanding the possible impacts of W. bancrofti diversity on the epidemiology and control of LF in Ghana. Methods The Mitochondrial, Cytochrome C Oxidase I gene of W. bancrofti samples was sequenced and analyzed. The test sequences were grouped into infrapopulations, and pairwise differences (Π) and mutation rates (θ) were computed. The amount of variance within and among populations was also computed using the AMOVA. The evolutionary history was inferred using the Maximum Parsimony method. Results Seven samples from the South and 15 samples from the North were sequenced, and submitted to GenBank with accession numbers GQ479497- GQ479518. The results revealed higher mutation frequencies in the southern population, compared to the northern population. Haplotype analyses revealed a total of 11 haplotypes (Hap) in all the 22 DNA sequences, with high genetic variation and polymorphisms within the southern samples. Conclusion This study showed that there is considerable genetic variability within W. bancrofti populations in Ghana, differences that might explain the observed epidemiology of LF. Further studies are however required for an in-depth understanding of LF epidemiology and control

    The influence of footwear on the modular organization of running

    Get PDF
    For most of our history, we predominantly ran barefoot or in minimalist shoes. The advent of modern footwear, however, might have introduced alterations in the motor control of running. The present study investigated shod and barefoot running under the perspective of the modular organization of muscle activation, in order to help addressing the neurophysiological factors underlying human locomotion. On a treadmill, 20 young and healthy inexperienced barefoot runners ran shod and barefoot at preferred speed (2.8 ± 0.4 m/s). Fundamental synergies, containing the time-dependent activation coefficients (motor primitives) and the time-invariant muscle weightings (motor modules), were extracted from 24 ipsilateral electromyographic activities using non-negative matrix factorization. In shod running, the average foot strike pattern was a rearfoot strike, while in barefoot running it was a mid-forefoot strike. In both conditions, five fundamental synergies were enough to describe as many gait cycle phases: weight acceptance, propulsion, arm swing, early swing and late swing. We found the motor primitives to be generally shifted earlier in time during the stance-related phases and later in the swing-related ones in barefoot running. The motor primitive describing the propulsion phase was significantly of shorter duration (peculiarity confirmed by the analysis of the spinal motor output). The arm swing primitive, instead, was significantly wider in the barefoot condition. The motor modules demonstrated analogous organization with some significant differences in the propulsion, arm swing and late swing synergies. Other than to the trivial absence of shoes, the differences might be deputed to the lower ankle gear ratio (and the consequent increased system instability) and to the higher recoil capabilities of the longitudinal foot arch during barefoot compared to shod running. © 2017 Santuz, Ekizos, Janshen, Baltzopoulos and Arampatzis

    Effects of acute fatigue on the volitional and magnetically-evoked electromechanical delay of the knee flexors in males and females

    Get PDF
    Neuromuscular performance capabilities, including those measured by evoked responses, may be adversely affected by fatigue; however, the capability of the neuromuscular system to initiate muscle force rapidly under these circumstances is yet to be established. Sex-differences in the acute responses of neuromuscular performance to exercise stress may be linked to evidence that females are much more vulnerable to ACL injury than males. Optimal functioning of the knee flexors is paramount to the dynamic stabilisation of the knee joint, therefore the aim of this investigation was to examine the effects of acute maximal intensity fatiguing exercise on the voluntary and magnetically-evoked electromechanical delay in the knee flexors of males and females. Knee flexor volitional and magnetically-evoked neuromuscular performance was assessed in seven male and nine females prior to and immediately after: (i) an intervention condition comprising a fatigue trial of 30-seconds maximal static exercise of the knee flexors, (ii) a control condition consisting of no exercise. The results showed that the fatigue intervention was associated with a substantive reduction in volitional peak force (PFV) that was greater in males compared to females (15.0%, 10.2%, respectively, p < 0.01) and impairment to volitional electromechanical delay (EMDV) in females exclusively (19.3%, p < 0.05). Similar improvements in magnetically-evoked electromechanical delay in males and females following fatigue (21%, p < 0.001), however, may suggest a vital facilitatory mechanism to overcome the effects of impaired voluntary capabilities, and a faster neuromuscular response that can be deployed during critical times to protect the joint system

    Preliminary Investigation Into the Effect of ACTN3 and ACE Polymorphisms on Muscle and Performance Characteristics

    Get PDF
    Preliminary investigation into the effect of ACTN3 and ACE polymorphisms on muscle and performance characteristics. J Strength Cond Res XX(X): 000-000, 2018-The purpose of this investigation was to explore the phenotypic and performance outcomes associated with ACTN3 and ACE polymorphisms. Ten trained men (age = 25.8 ± 3.0 years, height = 183.3 ± 4.1 cm, body mass = 92.3 ± 9.3 kg, and back squat to body mass ratio = 1.8 ± 0.3) participated. Blood samples were analyzed to determine ACTN3 and ACE polymorphisms. Standing ultrasonography images of the vastus lateralis (VL) were collected to determine whole muscle cross-sectional area (CSA-M), and a percutaneous muscle biopsy of the VL was collected to determine type I-specific CSA (CSA-T1), type II-specific CSA (CSA-T2), and type II to type I CSA ratio (CSA-R). Isometric squats were performed on force platforms with data used to determine peak force (IPF), allometrically scaled peak force (IPFa), and rate of force development (RFD) at various timepoints. One repetition maximum back squats were performed, whereby allometrically scaled dynamic strength (DSa) was determined. Cohen\u27s d effect sizes revealed ACTN3 RR and ACE DD tended to result in greater CSA-M but differ in how they contribute to performance. ACTN3 RR\u27s influence seems to be in the type II fibers, altering maximal strength, and ACE DD may influence RFD capabilities through a favorable CSA-R. Although the findings of the current investigation are limited by the sample size, the findings demonstrate the potential influence of ACTN3 and ACE polymorphisms on isometric and dynamic strength testing. This study may serve as a framework to generate hypotheses regarding the effect of genetics on performance

    Amortiguación de los saltos verticales según el propósito del movimiento deportivo posterior

    Get PDF
    The main objective of this study was to identify biomechanical differences among three landing styles: a) discrete landing (DL) from a drop jump; b) preparatory landing preceding jumping (LPJ), and c) landing preceding running (LPR). The sample was composed of 29 athletes who perform jumps routinely. Sagittal plane jump parameters were recorded using a camera synchronized with a force plate. Peak reaction forces were attenuated more efficiently in LPJ and LPR, as compared to DL. The kinematic model used for LPJ was similar to that for DL. Yet, neural and reflex activity during muscle flexion-extension during DL makes impact absorption more efficient. LPR is associated with an increased risk for injury as a result of the forward displacement of the tibia.El principal objetivo ha sido detectar las diferencias biomecánicas de tres modelos de aterrizaje: a) aterrizaje discreto (AD), con misión de amortiguar un salto vertical, b) aterrizaje preparatorio al salto vertical (APS) y c) aterrizaje que precedía a una carrera (APC). Han participado 29 deportistas donde el salto constituye una habilidad básica. Se ha utilizado una plataforma de fuerza sincronizada a una cámara de vídeo que registraba el plano sagital de los saltos. Los resultados indican que los APS y APC amortiguan más los picos de fuerza de reacción vertical que los AD. El modelo cinemático utilizado para los APS fue similar al AD, aunque la mayor actividad neural y refleja propia del ciclo estiramiento-acortamiento para realizar el posterior salto vertical haría más eficiente la absorción de impactos. La estrategia utilizada para los APC muestra un incremento del riesgo de lesión como consecuencia del desplazamiento hacia delante de la tibia

    Force Transmission Between the Gastrocnemius and Soleus Sub-Tendons of the Achilles Tendon in Rat

    Get PDF
    The Achilles tendon (AT) is comprised of three distinct sub-tendons bound together by the inter-subtendon matrix (ISTM). The interactions between sub-tendons will have important implications for AT function. The aim of this study was to investigate the extent to which the ISTM facilitates relative sliding between sub-tendons, and serves as a pathway for force transmission between the gastrocnemius (GAS) and soleus (SOL) sub-tendons of the rat AT. In this study, ATs were harvested from Wistar rats, and the mechanical behavior and composition of the ISTM were explored. To determine force transmission between sub-tendons, the proximal and distal ends of the GAS and SOL sub-tendons were secured, and the forces at each of these locations were measured during proximal loading of the GAS. To determine the ISTM mechanical behavior, only the proximal GAS and distal SOL were secured, and the ISTM was loaded in shear. Finally, for compositional analysis, histological examination assessed the distribution of matrix proteins throughout sub-tendons and the ISTM. The results revealed distinct differences between the forces at the proximal and distal ends of both sub-tendons when proximal loading was applied to the GAS, indicating force transmission between GAS and SOL sub-tendons. Inter-subtendon matrix tests demonstrated an extended initial low stiffness toe region to enable some sub-tendon sliding, coupled with high stiffness linear region such that force transmission between sub-tendons is ensured. Histological data demonstrate an enrichment of collagen III, elastin, lubricin and hyaluronic acid in the ISTM. We conclude that ISTM composition and mechanical behavior are specialized to allow some independent sub-tendon movement, whilst still ensuring capacity for force transmission between the sub-tendons of the AT

    Men's and women's World Championship marathon performances and changes with fatigue are not explained by kinematic differences between footstrike patterns

    Get PDF
    World-class marathon runners make initial contact with the rearfoot, midfoot or forefoot. This novel study analyzed kinematic similarities and differences between rearfoot and non-rearfoot strikers within the men’s and women’s 2017 IAAF World Championship marathons across the last two laps. Twenty-eight men and 28 women, equally divided by footstrike pattern, were recorded at 29.5 and 40 km (laps 3 and 4, respectively) using two high-definition cameras (50 Hz). The videos were digitized to derive spatiotemporal and joint kinematic data, with additional footage (120 Hz) used to identify footstrike patterns. There was no difference in running speed, step length or cadence between rearfoot and non-rearfoot strikers during either lap in both races, and these three key variables decreased in athletes of either footstrike pattern to a similar extent between laps. Men slowed more than women between laps, and overall had greater reductions in step length and cadence. Rearfoot strikers landed with their foot farther in front of the center of mass (by 0.02 – 0.04 m), with non-rearfoot strikers relying more on flight distance for overall step length. Male rearfoot strikers had more extended knees, dorsiflexed ankles and hyperextended shoulders at initial contact than non-rearfoot strikers, whereas female rearfoot strikers had more flexed hips and extended knees at initial contact. Very few differences were found at midstance and toe-off. Rearfoot and non-rearfoot striking techniques were therefore mostly indistinguishable except at initial contact, and any differences that did occur were very small. The spatiotemporal variables that differed between footstrike patterns were not associated with faster running speeds and, ultimately, neither footstrike pattern prevented reductions in running speeds. The only joint angle measured at a specific gait event to change with fatigue was midswing knee flexion angle in men. Coaches should thus note that encouraging marathon runners to convert from rearfoot to non-rearfoot striking is unlikely to provide any performance benefits, and that training the fatigue resistance of key lower limb muscle-tendon units to avoid decreases in step length and cadence are more useful in preventing reductions in speed during the later stages of the race

    Intramuscular Pressure of Tibialis Anterior Reflects Ankle Torque but Does Not Follow Joint Angle-Torque Relationship

    Get PDF
    Intramuscular pressure (IMP) is the hydrostatic fluid pressure that is directly related to muscle force production. Electromechanical delay (EMD) provides a link between mechanical and electrophysiological quantities and IMP has potential to detect local electromechanical changes. The goal of this study was to assess the relationship of IMP with the mechanical and electrical characteristics of the tibialis anterior muscle (TA) activity at different ankle positions. We hypothesized that (1) the TA IMP and the surface EMG (sEMG) and fine-wire EMG (fwEMG) correlate to ankle joint torque, (2) the isometric force of TA increases at increased muscle lengths, which were imposed by a change in ankle angle and IMP follows the length-tension relationship characteristics, and (3) the electromechanical delay (EMD) is greater than the EMD of IMP during isometric contractions. Fourteen healthy adults [7 female; mean (SD) age = 26.9 (4.2) years old with 25.9 (5.5) kg/m2 body mass index] performed (i) three isometric dorsiflexion (DF) maximum voluntary contraction (MVC) and (ii) three isometric DF ramp contractions from 0 to 80% MVC at rate of 15% MVC/second at DF, Neutral, and plantarflexion (PF) positions. Ankle torque, IMP, TA fwEMG, and TA sEMG were measured simultaneously. The IMP, fwEMG, and sEMG were significantly correlated to the ankle torque during ramp contractions at each ankle position tested. This suggests that IMP captures in vivo mechanical properties of active muscles. The ankle torque changed significantly at different ankle positions however, the IMP did not reflect the change. This is explained with the opposing effects of higher compartmental pressure at DF in contrast to the increased force at PF position. Additionally, the onset of IMP activity is found to be significantly earlier than the onset of force which indicates that IMP can be designed to detect muscular changes in the course of neuromuscular diseases impairing electromechanical transmission
    • …
    corecore