139 research outputs found

    Transcriptional repressor ZEB2 promotes terminal differentiation of CD8⁺ effector and memory T cell populations during infection

    Get PDF
    ZEB2 is a multi-zinc-finger transcription factor known to play a significant role in early neurogenesis and in epithelial-mesenchymal transition-dependent tumor metastasis. Although the function of ZEB2 in T lymphocytes is unknown, activity of the closely related family member ZEB1 has been implicated in lymphocyte development. Here, we find that ZEB2 expression is up-regulated by activated T cells, specifically in the KLRG1(hi) effector CD8(+) T cell subset. Loss of ZEB2 expression results in a significant loss of antigen-specific CD8(+) T cells after primary and secondary infection with a severe impairment in the generation of the KLRG1(hi) effector memory cell population. We show that ZEB2, which can bind DNA at tandem, consensus E-box sites, regulates gene expression of several E-protein targets and may directly repress Il7r and Il2 in CD8(+) T cells responding to infection. Furthermore, we find that T-bet binds to highly conserved T-box sites in the Zeb2 gene and that T-bet and ZEB2 regulate similar gene expression programs in effector T cells, suggesting that T-bet acts upstream and through regulation of ZEB2. Collectively, we place ZEB2 in a larger transcriptional network that is responsible for the balance between terminal differentiation and formation of memory CD8(+) T cells

    Is DRE essential for the follow up of prostate cancer patients? A prospective audit of 194 patients

    Get PDF
    BACKGROUND: Prostate cancer follow up forms a substantial part of the urology outpatient workload. Nurse led prostate cancer follow up clinics are becoming more common. Routine follow-up may involve performing DRE, which may require training. OBJECTIVES: The aim of this audit was to assess the factors that influenced the change in the management of prostate cancer patients during follow up. This would allow us to pave the way towards a protocol driven follow up clinic led by nurse specialists without formal training in DRE. RESULTS: 194 prostate cancer patients were seen over a period of two months and all the patients had DRE performed on at least one occasion. The management was changed in 47 patients. The most common factor influencing this change was PSA trend. A change in DRE findings influenced advancement of the clinic visit in 2 patients. CONCLUSIONS: PSA is the most common factor influencing change in the management of these patients. Nurse specialists can run prostate cancer follow-up clinics in parallel to existing consultant clinics and reserve DRE only for those patients who have a PSA change or have onset of new symptoms. However larger studies are required involving all the subgroups of patients to identify the subgroups of patients who will require DRE routinely

    The Dynamics of T-Cell Receptor Repertoire Diversity Following Thymus Transplantation for DiGeorge Anomaly

    Get PDF
    T cell populations are regulated both by signals specific to the T-cell receptor (TCR) and by signals and resources, such as cytokines and space, that act independently of TCR specificity. Although it has been demonstrated that disruption of either of these pathways has a profound effect on T-cell development, we do not yet have an understanding of the dynamical interactions of these pathways in their joint shaping of the T cell repertoire. Complete DiGeorge Anomaly is a developmental abnormality that results in the failure of the thymus to develop, absence of T cells, and profound immune deficiency. After receiving thymic tissue grafts, patients suffering from DiGeorge anomaly develop T cells derived from their own precursors but matured in the donor tissue. We followed three DiGeorge patients after thymus transplantation to utilize the remarkable opportunity these subjects provide to elucidate human T-cell developmental regulation. Our goal is the determination of the respective roles of TCR-specific vs. TCR-nonspecific regulatory signals in the growth of these emerging T-cell populations. During the course of the study, we measured peripheral blood T-cell concentrations, TCRβ V gene-segment usage and CDR3-length spectratypes over two years or more for each of the subjects. We find, through statistical analysis based on a novel stochastic population-dynamic T-cell model, that the carrying capacity corresponding to TCR-specific resources is approximately 1000-fold larger than that of TCR-nonspecific resources, implying that the size of the peripheral T-cell pool at steady state is determined almost entirely by TCR-nonspecific mechanisms. Nevertheless, the diversity of the TCR repertoire depends crucially on TCR-specific regulation. The estimated strength of this TCR-specific regulation is sufficient to ensure rapid establishment of TCR repertoire diversity in the early phase of T cell population growth, and to maintain TCR repertoire diversity in the face of substantial clonal expansion-induced perturbation from the steady state

    Population mechanics: A mathematical framework to study T cell homeostasis

    Get PDF
    Unlike other cell types, T cells do not form spatially arranged tissues, but move independently throughout the body. Accordingly, the number of T cells in the organism does not depend on physical constraints imposed by the shape or size of specific organs. Instead, it is determined by competition for interleukins. From the perspective of classical population dynamics, competition for resources seems to be at odds with the observed high clone diversity, leading to the so-called diversity paradox. In this work we make use of population mechanics, a non-standard theoretical approach to T cell homeostasis that accounts for clone diversity as arising from competition for interleukins. The proposed models show that carrying capacities of T cell populations naturally emerge from the balance between interleukins production and consumption. These models also suggest remarkable functional differences in the maintenance of diversity in naïve and memory pools. In particular, the distribution of memory clones would be biased towards clones activated more recently, or responding to more aggressive pathogenic threats. In contrast, permanence of naïve T cell clones would be determined by their affinity for cognate antigens. From this viewpoint, positive and negative selection can be understood as mechanisms to maximize naïve T cell diversity

    Enhanced Neointima Formation Following Arterial Injury in Immune Deficient Rag-1−/− Mice Is Attenuated by Adoptive Transfer of CD8+ T cells

    Get PDF
    T cells modulate neointima formation after arterial injury but the specific T cell population that is activated in response to arterial injury remains unknown. The objective of the study was to identify the T cell populations that are activated and modulate neointimal thickening after arterial injury in mice. Arterial injury in wild type C57Bl6 mice resulted in T cell activation characterized by increased CD4+CD44hi and CD8+CD44hi T cells in the lymph nodes and spleens. Splenic CD8+CD25+ T cells and CD8+CD28+ T cells, but not CD4+CD25+ and CD4+CD28+ T cells, were also significantly increased. Adoptive cell transfer of CD4+ or CD8+ T cells from donor CD8−/− or CD4−/− mice, respectively, to immune-deficient Rag-1−/− mice was performed to determine the T cell subtype that inhibits neointima formation after arterial injury. Rag-1−/− mice that received CD8+ T cells had significantly reduced neointima formation compared with Rag-1−/− mice without cell transfer. CD4+ T cell transfer did not reduce neointima formation. CD8+ T cells from CD4−/− mice had cytotoxic activity against syngeneic smooth muscle cells in vitro. The study shows that although both CD8+ T cells and CD4+ T cells are activated in response to arterial injury, adoptive cell transfer identifies CD8+ T cells as the specific and selective cell type involved in inhibiting neointima formation

    Self–class I MHC molecules support survival of naive CD8 T cells, but depress their functional sensitivity through regulation of CD8 expression levels

    Get PDF
    Previous studies have suggested that naive CD8 T cells require self-peptide–major histocompatability complex (MHC) complexes for maintenance. However, interpretation of such studies is complicated because of the involvement of lymphopenic animals, as lymphopenia drastically alters naive T cell homeostasis and function. In this study, we explored naive CD8 T cell survival and function in nonlymphopenic conditions by using bone marrow chimeric donors and hosts in which class I MHC expression is absent or limited to radiosensitive versus radioresistant cells. We found that long-term survival of naive CD8 T cells (but not CD4 T cells) was impaired in the absence of class I MHC. However, distinct from this effect, class I MHC deprivation also enhanced naive CD8 T cell responsiveness to low-affinity (but not high-affinity) peptide–MHC ligands. We found that this improved sensitivity was a consequence of up-regulated CD8 levels, which was mediated through a transcriptional mechanism. Hence, our data suggest that, in a nonlymphopenic setting, self-class I MHC molecules support CD8 T cell survival, but that these interactions also attenuate naive T cell sensitivity by dynamic tuning of CD8 levels

    Some deterministic and stochastic mathematical models of naive T-cell homeostasis

    Get PDF
    Humans live for decades, whereas mice live for months. Over these long timescales, naïve T cells die or divide infrequently enough that it makes sense to approximate death and division as instantaneous events. The population of T cells in the body is naturally divided into clonotypes; a clonotype is the set of cells that have identical T‐cell receptors. While total numbers of cells, such as naïve CD4+ T cells, are large enough that ordinary differential equations are an appropriate starting point for mathematical models, the numbers of cells per clonotype are not. Here, we review a number of basic mathematical models of the maintenance of clonal diversity. As well as deterministic models, we discuss stochastic models that explicitly track the integer number of naïve T cells in many competing clonotypes over the lifetime of a mouse or human, including the effect of waning thymic production. Experimental evaluation of clonal diversity by bulk high‐throughput sequencing has many difficulties, but the use of single‐cell sequencing is restricted to numbers of cells many orders of magnitude smaller than the total number of T cells in the body. Mathematical questions associated with extrapolating from small samples are therefore key to advances in understanding the diversity of the repertoire of T cells. We conclude with some mathematical models on how to advance in this area

    Glucocorticoids Attenuate T Cell Receptor Signaling

    Get PDF
    Glucocorticoids (GCs) affect peripheral immune responses by inhibiting T cell immunity at several stages of the activation cascade, causing impaired cytokine production and effector function. The recent demonstration that the thymic epithelium and possibly thymocytes themselves produce steroids suggests that endogenous GCs also play a role in the control of T cell development. As both peripheral responsiveness and thymic differentiation appear to be regulated by the quantity and quality of intracellular signals issued by antigen–major histocompatibility complex-engaged T cell receptor (TCR) complexes, we investigated the effects of GCs on the signaling properties of T cells stimulated by anti-CD3 monoclonal antibodies or agonist peptides. We demonstrate in this work that dexamethasone, a synthetic GC, inhibits the early signaling events initiated upon TCR ligation, such as tyrosine phosphorylation of several TCR-associated substrates including the ζ chain, the ZAP70 kinase, and the transmembrane adapter molecule linker for activation of T cells. Hypophosphorylation was not a consequence of reduced kinase activity of src protein tyrosine kinases, but was correlated with an altered- membrane compartmentalization of these molecules. These observations indicate that in addition to their well-described ability to interfere with the transcription of molecules involved in peripheral responses, GCs inhibit T cell activation by affecting the early phosphorylating events induced after TCR ligation

    Towards sustainable development through the perspective of eco-efficiency - A systematic literature review

    Get PDF
    © 2017 Elsevier Ltd. Sustainability concerns have increasingly gained importance among organizations and their stakeholders around the world. In this context, eco-efficiency has become a consistent tool towards the transition to sustainable development and the efforts of eco-efficiency indicators have been used for comparative studies and decision-making tasks, providing better financial, environmental, and social performance. The aim of this paper is to provide a systematic literature review on the theme of sustainable development from the perspective of eco-efficiency, with the adaptation of the Knowledge Development Process intervention instrument - constructivist (ProKnow-C). The paper identifies and structures the state-of-the-art between Eco-Efficiency and Sustainable Development with a view to: (i) selecting a Bibliographic Portfolio (BP) that is aligned with the perception of the researchers on the theme; (ii) performing a bibliometric analysis of the selected BP; (iii) performing a thematic synthesis; (iv) finding the integration of eco-efficiency and sustainable development with other approaches; (v) proposing an innovative framework to achieve sustainable development through eco-efficiency indicators; and (vi) finding paths for further research. This research makes multiple new contributions, providing both academics and practitioners a better panorama to achieve sustainable development through eco-efficiency by expanding the literature review, highlighting the synergies and barriers between eco-efficiency and sustainable development and by comparing and analysing them, showing its relevant features. In addition, we synthesized the contributions of the BP according to the BASF indicators, sustainable dimensions and four measurement levels: industry, organization, project and process to better describe the current academic scenario on the subject

    G-CSF/anti-G-CSF antibody complexes drive the potent recovery and expansion of CD11b+Gr-1+ myeloid cells without compromising CD8+ T cell immune responses

    Get PDF
    BACKGROUND: Administration of recombinant G-CSF following cytoreductive therapy enhances the recovery of myeloid cells, minimizing the risk of opportunistic infection. Free G-CSF, however, is expensive, exhibits a short half-life, and has poor biological activity in vivo. METHODS: We evaluated whether the biological activity of G-CSF could be improved by pre-association with anti-G-CSF mAb prior to injection into mice. RESULTS: We find that the efficacy of G-CSF therapy can be enhanced more than 100-fold by pre-association of G-CSF with an anti-G-CSF monoclonal antibody (mAb). Compared with G-CSF alone, administration of G-CSF/anti-G-CSF mAb complexes induced the potent expansion of CD11b(+)Gr-1(+) myeloid cells in mice with or without concomitant cytoreductive treatment including radiation or chemotherapy. Despite driving the dramatic expansion of myeloid cells, in vivo antigen-specific CD8(+) T cell immune responses were not compromised. Furthermore, injection of G-CSF/anti-G-CSF mAb complexes heightened protective immunity to bacterial infection. As a measure of clinical value, we also found that antibody complexes improved G-CSF biological activity much more significantly than pegylation. CONCLUSIONS: Our findings provide the first evidence that antibody cytokine complexes can effectively expand myeloid cells, and furthermore, that G-CSF/anti-G-CSF mAb complexes may provide an improved method for the administration of recombinant G-CSF
    corecore