246 research outputs found

    Prevalence, genetic diversity and antiretroviral drugs resistance-associated mutations among untreated HIV-1-infected pregnant women in Gabon, central Africa

    Get PDF
    BACKGROUND: In Africa, the wide genetic diversity of HIV has resulted in emergence of new strains, rapid spread of this virus in sub-Saharan populations and therefore spread of the HIV epidemic throughout the continent. METHODS: To determine the prevalence of antibodies to HIV among a high-risk population in Gabon, 1098 and 2916 samples were collected from pregnant women in 2005 and 2008, respectively. HIV genotypes were evaluated in 107 HIV-1-positive samples to determine the circulating subtypes of strains and their resistance to antiretroviral drugs (ARVs). RESULTS: The seroprevalences were 6.3% in 2005 and 6.0% in 2008. The main subtype was recombinant CRF02_AG (46.7%), followed by the subtypes A (19.6%), G (10.3%), F (4.7%), H (1.9%) and D (0.9%) and the complex recombinants CRF06_cpx (1.9%) and CRF11_cpx (1.9%); 12.1% of subtypes could not be characterized. Analysis of ARVs resistance to the protease and reverse transcriptase coding regions showed mutations associated with extensive subtype polymorphism. In the present study, the HIV strains showed reduced susceptibility to ARVs (2.8%), particularly to protease inhibitors (1.9%) and nucleoside reverse transcriptase inhibitors (0.9%). CONCLUSIONS: The evolving genetic diversity of HIV calls for continuous monitoring of its molecular epidemiology in Gabon and in other central African countries

    An antibody-based biomarker discovery method by mass spectrometry sequencing of complementarity determining regions

    Get PDF
    Autoantibodies are increasingly used as biomarkers in the detection of autoimmune disorders and cancer. Disease specific antibodies are generally detected by their binding to specific antigens. As an alternative approach, we propose to identify specific complementarity determining regions (CDR) of IgG that relate to an autoimmune disorder or cancer instead of the specific antigen(s). In this manuscript, we tested the technical feasibility to detect and identify CDRs of specific antibodies by mass spectrometry. We used a commercial pooled IgG preparation as well as purified serum IgG fractions that were spiked with different amounts of a fully human monoclonal antibody (adalimumab). These samples were enzymatically digested and analyzed by nanoLC Orbitrap mass spectrometry. In these samples, we were able to identify peptides derived from the CDRs of adalimumab. These peptides could be detected at an amount of 110 attomole, 5 orders of magnitude lower than the total IgG concentration in these samples. Using higher energy collision induced dissociation (HCD) fragmentation and subsequent de novo sequencing, we could successfully identify 50% of the detectable CDR peptides of adalimumab. In addition, we demonstrated that an affinity purification with anti-dinitrophenol (DNP) monoclonal antibody enhanced anti-DNP derived CDR detection in a serum IgG background. In conclusion, specific CDR peptides could be detected and sequenced at relatively low levels (attomole-femtomole range) which should allow the detection of clinically relevant CDR peptides in patient samples

    Experimental neck muscle pain impairs standing balance in humans

    Full text link
    Impaired postural control has been reported in patients with chronic neck pain of both traumatic and non-traumatic etiologies, but whether painful stimulation of neck muscle per se can affect balance control during quiet standing in humans remains unclear. The purpose of the present experiment was thus to investigate the effect of experimental neck muscle pain on standing balance in young healthy adults. To achieve this goal, 16 male university students were asked to stand upright as still as possible on a force platform with their eyes closed in two conditions of No pain and Pain of the neck muscles elicited by experimental painful electrical stimulation. Postural control and postural performance were assessed by the displacements of the center of foot pressure (CoP) and of the center of mass (CoM), respectively. The results showed increased CoP and CoM displacements variance, range, mean velocity, and mean and median frequencies in the Pain relative to the No pain condition. The present findings emphasize the destabilizing effect of experimental neck muscle pain per se, and more largely stress the importance of intact neck neuromuscular function on standing balance

    Recognising Victimhood: Lessons from the International Criminal Court and Mass Claim Programmes for the Compensation Procedure Parallel to the Trial of International Crimes in the Netherlands

    Get PDF
    In the Netherlands, the Dutch criminal court in The Hague (hereinafter: ‘Netherlands International Crimes Court’ or ‘NIC court’) is assigned to try international crimes, and to provide compensation to victims of such crimes. Whereas it has specific criminal laws at its disposal to try international crimes, it applies ‘regular’ Dutch civil law to assess claims for compensation. Yet compensation for international crimes entails challenges that are quite different from domestic crimes: international crimes are normally committed against a large number of victims, and frequently result in bodily harm. This article argues that the NIC court will most likely rule a large number of claims for compensation inadmissible, as a consequence of which victims cannot benefit from the advantages inherent in the award of compensation within the criminal process. It then explores the adjudicative and reparatory standards that the International Criminal Court and mass claim programmes have applied to simplify both the adjudication of a large number of claims, and the calculation of a large number of instances of bodily damage. It is submitted that adoption by the NIC court of international reparatory standards could facilitate the assessment of a large number of civil claims within the criminal process, without prejudice to the legitimate interests of the defendant for an adequate procedure. However, these standards require the NIC court to strike a new balance between tailor-made compensation and symbolic compensation, and thereby between corrective justice and restorative justice

    A functional alternative splicing mutation in human tryptophan hydroxylase-2

    Get PDF
    The brain serotonergic system has an essential role in the physiological functions of the central nervous system and dysregulation of serotonin (5-HT) homeostasis has been implicated in many neuropsychiatric disorders. The tryptophan hydroxylase-2 (TPH2) gene is the rate-limiting enzyme in brain 5-HT synthesis, and thus is an ideal candidate gene for understanding the role of dysregulation of brain serotonergic homeostasis. Here, we characterized a common, but functional single-nucleotide polymorphism (SNP rs1386493) in the TPH2 gene, which decreases efficiency of normal RNA splicing, resulting in a truncated TPH2 protein (TPH2-TR) by alternative splicing. TPH2-TR, which lacks TPH2 enzyme activity, dominant-negatively affects full-length TPH2 function, causing reduced 5-HT production. The predicted mRNA for TPH2-TR is present in postmortem brain of rs1386493 carriers. The rs13864923 variant does not appear to be overrepresented in either global or multiplex depression cohorts. However, in combination with other gene variants linked to 5-HT homeostasis, this variant may exhibit important epistatic influences

    Computational Modeling and Analysis of Insulin Induced Eukaryotic Translation Initiation

    Get PDF
    Insulin, the primary hormone regulating the level of glucose in the bloodstream, modulates a variety of cellular and enzymatic processes in normal and diseased cells. Insulin signals are processed by a complex network of biochemical interactions which ultimately induce gene expression programs or other processes such as translation initiation. Surprisingly, despite the wealth of literature on insulin signaling, the relative importance of the components linking insulin with translation initiation remains unclear. We addressed this question by developing and interrogating a family of mathematical models of insulin induced translation initiation. The insulin network was modeled using mass-action kinetics within an ordinary differential equation (ODE) framework. A family of model parameters was estimated, starting from an initial best fit parameter set, using 24 experimental data sets taken from literature. The residual between model simulations and each of the experimental constraints were simultaneously minimized using multiobjective optimization. Interrogation of the model population, using sensitivity and robustness analysis, identified an insulin-dependent switch that controlled translation initiation. Our analysis suggested that without insulin, a balance between the pro-initiation activity of the GTP-binding protein Rheb and anti-initiation activity of PTEN controlled basal initiation. On the other hand, in the presence of insulin a combination of PI3K and Rheb activity controlled inducible initiation, where PI3K was only critical in the presence of insulin. Other well known regulatory mechanisms governing insulin action, for example IRS-1 negative feedback, modulated the relative importance of PI3K and Rheb but did not fundamentally change the signal flow

    Molecular control of HIV-1 postintegration latency: implications for the development of new therapeutic strategies

    Get PDF
    The persistence of HIV-1 latent reservoirs represents a major barrier to virus eradication in infected patients under HAART since interruption of the treatment inevitably leads to a rebound of plasma viremia. Latency establishes early after infection notably (but not only) in resting memory CD4+ T cells and involves numerous host and viral trans-acting proteins, as well as processes such as transcriptional interference, RNA silencing, epigenetic modifications and chromatin organization. In order to eliminate latent reservoirs, new strategies are envisaged and consist of reactivating HIV-1 transcription in latently-infected cells, while maintaining HAART in order to prevent de novo infection. The difficulty lies in the fact that a single residual latently-infected cell can in theory rekindle the infection. Here, we review our current understanding of the molecular mechanisms involved in the establishment and maintenance of HIV-1 latency and in the transcriptional reactivation from latency. We highlight the potential of new therapeutic strategies based on this understanding of latency. Combinations of various compounds used simultaneously allow for the targeting of transcriptional repression at multiple levels and can facilitate the escape from latency and the clearance of viral reservoirs. We describe the current advantages and limitations of immune T-cell activators, inducers of the NF-κB signaling pathway, and inhibitors of deacetylases and histone- and DNA- methyltransferases, used alone or in combinations. While a solution will not be achieved by tomorrow, the battle against HIV-1 latent reservoirs is well- underway

    First measurement of coherent ρ0 photoproduction in ultra-peripheral Xe–Xe collisions at √sNN = 5.44 TeV

    Get PDF
    The first measurement of the coherent photoproduction of ρ0 vector mesons in ultra-peripheral Xe–Xe collisions at sNN=5.44 TeV is presented. This result, together with previous HERA γp data and γ–Pb measurements from ALICE, describes the atomic number (A) dependence of this process, which is particularly sensitive to nuclear shadowing effects and to the approach to the black-disc limit of QCD at a semi-hard scale. The cross section of the Xe+Xe→ρ0+Xe+Xe process, measured at midrapidity through the decay channel ρ0→π+π−, is found to be dσ/dy=131.5±5.6(stat.)−16.9+17.5(syst.) mb. The ratio of the continuum to resonant contributions for the production of pion pairs is also measured. In addition, the fraction of events accompanied by electromagnetic dissociation of either one or both colliding nuclei is reported. The dependence on A of cross section for the coherent ρ0 photoproduction at a centre-of-mass energy per nucleon of the γA system of WγA,n=65 GeV is found to be consistent with a power-law behaviour σ(γA→ρ0A)∝Aα with a slope α=0.96±0.02(syst.). This slope signals important shadowing effects, but it is still far from the behaviour expected in the black-disc limit.publishedVersio

    Measurement of quarkonium production in proton–lead and proton–proton collisions at 5.02 TeV with the ATLAS detector

    Get PDF
    The modification of the production of J/ψ, ψ(2S), and Υ(nS) (n=1,2,3) in p+Pb collisions with respect to their production in pp collisions has been studied. The p+Pb and pp datasets used in this paper correspond to integrated luminosities of 28 nb−1 and 25 pb−1 respectively, collected in 2013 and 2015 by the ATLAS detector at the LHC, both at a centre-of-mass energy per nucleon pair of 5.02 TeV. The quarkonium states are reconstructed in the dimuon decay channel. The yields of J/ψ and ψ(2S) are separated into prompt and non-prompt sources. The measured quarkonium differential cross sections are presented as a function of rapidity and transverse momentum, as is the nuclear modification factor, RpPb for J/ψ and Υ(nS). No significant modification of the J/ψ production is observed while Υ(nS) production is found to be suppressed at low transverse momentum in p+Pb collisions relative to pp collisions. The production of excited charmonium and bottomonium states is found to be suppressed relative to that of the ground states in central p+Pb collisions
    corecore