92 research outputs found

    AMI galactic plane survey at 16 GHz - II. Full data release with extended coverage and improved processing

    Get PDF
    The Arcminute Microkelvin Imager Galactic Plane Survey (AMIGPS) provides mJy-sensitivity, arcminute-resolution interferometric images of the northern Galactic plane at ≈\approx 16 GHz. The first data release covered 76∘âȘ…â„“âȘ…170∘76^{\circ} \lessapprox \ell \lessapprox 170^{\circ} between latitudes of ∣b∣âȘ…5∘|b| \lessapprox 5^{\circ}; here we present a second data release, extending the coverage to 53∘âȘ…â„“âȘ…193∘53^{\circ} \lessapprox \ell \lessapprox 193^{\circ} and including high-latitude extensions to cover the Taurus and California giant molecular cloud regions, and the recently discovered large supernova remnant G159.6+7.3. The total coverage is now 1777 deg2^2 and the catalogue contains 6509 sources. We also describe the improvements to the data processing pipeline which improves the positional and flux density accuracies of the survey.We thank the staff of the Mullard Radio Astronomy Observatory for their invaluable assistance in the commissioning and operation of AMI, which is supported by Cambridge University and the Science and Technologies Facilities Council. YCP acknowledges support from a CCT/Cavendish Laboratory studentship and a Trinity College Junior Research Fellowship. CR and TZJ acknowledge support from Science and Technology Facilities Council studentships.This is the final version of the article. It first appeared from Oxford University Press via http://dx.doi.org/10.1093/mnras/stv172

    A detailed radio study of the energetic, nearby, and puzzling GRB 171010A

    Get PDF
    We present the results of an intensive multi-epoch radio frequency campaign on the energetic and nearby GRB 171010A with the Karl G. Janksy Very Large Array and Arcminute Microkelvin Imager Large Array. We began observing GRB 171010A a day after its initial detection, and were able to monitor the temporal and spectral evolution of the source over the following weeks. The spectra and their evolution are compared to the canonical theories for broadband GRB afterglows, with which we find a general agreement. There are, however, a number of features that are challenging to explain with a simple forward shock model, and we discuss possible reasons for these discrepancies. This includes the consideration of the existence of a reverse shock component, potential microphysical parameter evolution and the effect of scintillation

    AMI-CL J0300+2613: A Galactic anomalous-microwave-emission ring masquerading as a galaxy cluster

    Get PDF
    The Arcminute Microkelvin Imager (AMI) carried out a blind survey for galaxy clusters via their Sunyaev-Zel'dovich effect decrements between 2008 and 2011. The first detection, known as AMI-CL J0300+2613, has been reobserved with AMI equipped with a new digital correlator with high dynamic range. The combination of the new AMI data and more recent high-resolution sub-mm and infra-red maps now shows the feature in fact to be a ring of positive dust-correlated Galactic emission, which is likely to be anomalous microwave emission (AME). If so, this is the first completely blind detection of AME at arcminute scales

    The role of collaboration in the cognitive development of young children: a systematic review.

    Get PDF
    BACKGROUND: Collaboration is a key facilitator of cognitive development in early childhood; this review evaluates which factors mediate the impact of collaborative interactions on cognitive development in children aged 4-7 years. METHODS: A systematic search strategy identified relevant studies (n = 21), which assessed the role of ability on the relationship between collaboration and cognitive development. Other factors that interact with ability were also assessed: gender, sociability/friendship, discussion, age, feedback and structure. RESULTS: Immediate benefits of collaboration on cognitive development are highlighted for same-age peers. Collaborative interactions are beneficial for tasks measuring visual perception, problem-solving and rule-based thinking, but not for word-reading and spatial perspective-taking. Collaboration is particularly beneficial for lower-ability children when there is an ability asymmetry. High-ability children either regressed or did not benefit when paired with lower-ability participants. CONCLUSIONS: Overall, the studies included within this review indicate that brief one-off interactions can have a significant, positive effect on short-term cognitive development in children of infant school age. The longer-term advantages of collaboration are still unclear. Implications for practice and future research are discussed

    Planck Intermediate Results II: Comparison of Sunyaev-Zeldovich measurements from Planck and from the Arcminute Microkelvin Imager for 11 galaxy clusters

    Get PDF
    A comparison is presented of Sunyaev-Zeldovich measurements for 11 galaxy clusters as obtained by Planck and by the ground-based interferometer, the Arcminute Microkelvin Imager. Assuming a universal spherically-symmetric Generalised Navarro, Frenk & White (GNFW) model for the cluster gas pressure profile, we jointly constrain the integrated Compton-Y parameter (Y_500) and the scale radius (theta_500) of each cluster. Our resulting constraints in the Y_500-theta_500 2D parameter space derived from the two instruments overlap significantly for eight of the clusters, although, overall, there is a tendency for AMI to find the Sunyaev-Zeldovich signal to be smaller in angular size and fainter than Planck. Significant discrepancies exist for the three remaining clusters in the sample, namely A1413, A1914, and the newly-discovered Planck cluster PLCKESZ G139.59+24.18. The robustness of the analysis of both the Planck and AMI data is demonstrated through the use of detailed simulations, which also discount confusion from residual point (radio) sources and from diffuse astrophysical foregrounds as possible explanations for the discrepancies found. For a subset of our cluster sample, we have investigated the dependence of our results on the assumed pressure profile by repeating the analysis adopting the best-fitting GNFW profile shape which best matches X-ray observations. Adopting the best-fitting profile shape from the X-ray data does not, in general, resolve the discrepancies found in this subset of five clusters. Though based on a small sample, our results suggest that the adopted GNFW model may not be sufficiently flexible to describe clusters universally.Comment: update to metadata author list onl

    Energetic eruptions leading to a peculiar hydrogen-rich explosion of a massive star

    Get PDF
    Every supernova so far observed has been considered to be the terminal explosion of a star. Moreover, all supernovae with absorption lines in their spectra show those lines decreasing in velocity over time, as the ejecta expand and thin, revealing slower-moving material that was previously hidden. In addition, every supernova that exhibits the absorption lines of hydrogen has one main light-curve peak, or a plateau in luminosity, lasting approximately 100 days before declining1. Here we report observations of iPTF14hls, an event that has spectra identical to a hydrogen-rich core-collapse supernova, but characteristics that differ extensively from those of known supernovae. The light curve has at least five peaks and remains bright for more than 600 days; the absorption lines show little to no decrease in velocity; and the radius of the line-forming region is more than an order of magnitude bigger than the radius of the photosphere derived from the continuum emission. These characteristics are consistent with a shell of several tens of solar masses ejected by the progenitor star at supernova-level energies a few hundred days before a terminal explosion. Another possible eruption was recorded at the same position in 1954. Multiple energetic pre-supernova eruptions are expected to occur in stars of 95 to 130 solar masses, which experience the pulsational pair instability2,3,4,5. That model, however, does not account for the continued presence of hydrogen, or the energetics observed here. Another mechanism for the violent ejection of mass in massive stars may be required

    Planck 2015 results. XXVII. The second Planck catalogue of Sunyaev-Zeldovich sources

    Get PDF
    We present the all-sky Planck catalogue of Sunyaev-Zeldovich (SZ) sources detected from the 29 month full-mission data. The catalogue (PSZ2) is the largest SZ-selected sample of galaxy clusters yet produced and the deepest systematic all-sky surveyof galaxy clusters. It contains 1653 detections, of which 1203 are confirmed clusters with identified counterparts in external data sets, and is the first SZ-selected cluster survey containing >103 confirmed clusters. We present a detailed analysis of the survey selection function in terms of its completeness and statistical reliability, placing a lower limit of 83% on the purity. Using simulations, we find that the estimates of the SZ strength parameter Y5R500are robust to pressure-profile variation and beam systematics, but accurate conversion to Y500 requires the use of prior information on the cluster extent. We describe the multi-wavelength search for counterparts in ancillary data, which makes use of radio, microwave, infra-red, optical, and X-ray data sets, and which places emphasis on the robustness of the counterpart match. We discuss the physical properties of the new sample and identify a population of low-redshift X-ray under-luminous clusters revealed by SZ selection. These objects appear in optical and SZ surveys with consistent properties for their mass, but are almost absent from ROSAT X-ray selected samples

    Planck 2013 results : XXXII. The updated Planck catalogue of Sunyaev-Zeldovich sources

    Get PDF
    We update the all-sky Planck catalogue of 1227 clusters and cluster candidates (PSZ1) published in March 2013, derived from detections of the Sunyaev-Zeldovich (SZ) effect using the first 15.5 months of Planck satellite observations. As an addendum, we deliver an updated version of the PSZ1 catalogue, reporting the further confirmation of 86 Planck-discovered clusters. In total, the PSZ1 now contains 947 confirmed clusters, of which 214 were confirmed as newly discovered clusters through follow-up observations undertaken by the Planck Collaboration. The updated PSZ1 contains redshifts for 913 systems, of which 736 (similar to 80.6%) are spectroscopic, and associated mass estimates derived from the Y-z mass proxy. We also provide a new SZ quality flag for the remaining 280 candidates. This flag was derived from a novel artificial neural-network classification of the SZ signal. Based on this assessment, the purity of the updated PSZ1 catalogue is estimated to be 94%. In this release, we provide the full updated catalogue and an additional readme file with further information on the Planck SZ detections.Peer reviewe

    Planck intermediate results: II. Comparison of sunyaev-zeldovich measurements from planck and from the arcminute microkelvin imager for 11 galaxy clusters

    Get PDF
    • 

    corecore