6,005 research outputs found
Diffuse Gamma Rays: Galactic and Extragalactic Diffuse Emission
"Diffuse" gamma rays consist of several components: truly diffuse emission
from the interstellar medium, the extragalactic background, whose origin is not
firmly established yet, and the contribution from unresolved and faint Galactic
point sources. One approach to unravel these components is to study the diffuse
emission from the interstellar medium, which traces the interactions of high
energy particles with interstellar gas and radiation fields. Because of its
origin such emission is potentially able to reveal much about the sources and
propagation of cosmic rays. The extragalactic background, if reliably
determined, can be used in cosmological and blazar studies. Studying the
derived "average" spectrum of faint Galactic sources may be able to give a clue
to the nature of the emitting objects.Comment: 32 pages, 28 figures, kapproc.cls. Chapter to the book "Cosmic
Gamma-Ray Sources," to be published by Kluwer ASSL Series, Edited by K. S.
Cheng and G. E. Romero. More details can be found at
http://www.gamma.mpe-garching.mpg.de/~aws/aws.htm
Parameterizing the interstellar dust temperature
The temperature of interstellar dust particles is of great importance to
astronomers. It plays a crucial role in the thermodynamics of interstellar
clouds, because of the gas-dust collisional coupling. It is also a key
parameter in astrochemical studies that governs the rate at which molecules
form on dust. In 3D (magneto)hydrodynamic simulations often a simple expression
for the dust temperature is adopted, because of computational constraints,
while astrochemical modelers tend to keep the dust temperature constant over a
large range of parameter space. Our aim is to provide an easy-to-use parametric
expression for the dust temperature as a function of visual extinction () and to shed light on the critical dependencies of the dust temperature on
the grain composition. We obtain an expression for the dust temperature by
semi-analytically solving the dust thermal balance for different types of
grains and compare to a collection of recent observational measurements. We
also explore the effect of ices on the dust temperature. Our results show that
a mixed carbonaceous-silicate type dust with a high carbon volume fraction
matches the observations best. We find that ice formation allows the dust to be
warmer by up to 15% at high optical depths ( mag) in the
interstellar medium. Our parametric expression for the dust temperature is
presented as , where is in units of the Draine (1978) UV fieldComment: 16 pages, 17 figures, 4 tables. Accepted for publication in A&A.
Version 2: the omission of factor 0.921 in equation 4 is correcte
Decaying Dark Matter in Supersymmetric Model and Cosmic-Ray Observations
We study cosmic-rays in decaying dark matter scenario, assuming that the dark
matter is the lightest superparticle and it decays through a R-parity violating
operator. We calculate the fluxes of cosmic-rays from the decay of the dark
matter and those from the standard astrophysical phenomena in the same
propagation model using the GALPROP package. We reevaluate the preferred
parameters characterizing standard astrophysical cosmic-ray sources with taking
account of the effects of dark matter decay. We show that, if energetic leptons
are produced by the decay of the dark matter, the fluxes of cosmic-ray positron
and electron can be in good agreements with both PAMELA and Fermi-LAT data in
wide parameter region. It is also discussed that, in the case where sizable
number of hadrons are also produced by the decay of the dark matter, the mass
of the dark matter is constrained to be less than 200-300 GeV in order to avoid
the overproduction of anti-proton. We also show that the cosmic gamma-ray flux
can be consistent with the results of Fermi-LAT observation if the mass of the
dark matter is smaller than nearly 4 TeV.Comment: 24 pages, 5 figure
Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites (BORTAS) experiment: design, execution and science overview
We describe the design and execution of the BORTAS (Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites) experiment, which has the overarching objective of understanding the chemical aging of air masses that contain the emission products from seasonal boreal wildfires and how these air masses subsequently impact downwind atmospheric composition. The central focus of the experiment was a two-week deployment of the UK BAe-146-301 Atmospheric Research Aircraft (ARA) over eastern Canada, based out of Halifax, Nova Scotia. Atmospheric ground-based and sonde measurements over Canada and the Azores associated with the planned July 2010 deployment of the ARA, which was postponed by 12 months due to UK-based flights related to the dispersal of material emitted by the Eyjafjallajökull volcano, went ahead and constituted phase A of the experiment. Phase B of BORTAS in July 2011 involved the same atmospheric measurements, but included the ARA, special satellite observations and a more comprehensive ground-based measurement suite. The high-frequency aircraft data provided a comprehensive chemical snapshot of pyrogenic plumes from wildfires, corresponding to photochemical (and physical) ages ranging from 45 sr 10 days, largely by virtue of widespread fires over Northwestern Ontario. Airborne measurements reported a large number of emitted gases including semi-volatile species, some of which have not been been previously reported in pyrogenic plumes, with the corresponding emission ratios agreeing with previous work for common gases. Analysis of the NOy data shows evidence of net ozone production in pyrogenic plumes, controlled by aerosol abundance, which increases as a function of photochemical age. The coordinated ground-based and sonde data provided detailed but spatially limited information that put the aircraft data into context of the longer burning season in the boundary layer. Ground-based measurements of particulate matter smaller than 2.5 μm (PM2.5) over Halifax show that forest fires can on an episodic basis represent a substantial contribution to total surface PM2.5
Quasi-classical approximation in vortex filament dynamics. Integrable systems, gradient catastrophe and flutter
Quasiclassical approximation in the intrinsic description of the vortex
filament dynamics is discussed. Within this approximation the governing
equations are given by elliptic system of quasi-linear PDEs of the first order.
Dispersionless Da Rios system and dispersionless Hirota equation are among
them. They describe motion of vortex filament with slow varying curvature and
torsion without or with axial flow. Gradient catastrophe for governing
equations is studied. It is shown that geometrically this catastrophe manifests
as a fast oscillation of a filament curve around the rectifying plane which
resembles the flutter of airfoils. Analytically it is the elliptic umbilic
singularity in the terminology of the catastrophe theory. It is demonstrated
that its double scaling regularization is governed by the Painleve' I equation.Comment: 25 pages, 5 figures, minor typos correcte
Detection of Gamma-Ray Emission from the Starburst Galaxies M82 and NGC 253 with the Large Area Telescope on Fermi
We report the detection of high-energy gamma-ray emission from two starburst
galaxies using data obtained with the Large Area Telescope on board the Fermi
Gamma-ray Space Telescope. Steady point-like emission above 200 MeV has been
detected at significance levels of 6.8 sigma and 4.8 sigma respectively, from
sources positionally coincident with locations of the starburst galaxies M82
and NGC 253. The total fluxes of the sources are consistent with gamma-ray
emission originating from the interaction of cosmic rays with local
interstellar gas and radiation fields and constitute evidence for a link
between massive star formation and gamma-ray emission in star-forming galaxies.Comment: Submitted to ApJ Letter
Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
The inclusive and dijet production cross-sections have been measured for jets
containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass
energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The
measurements use data corresponding to an integrated luminosity of 34 pb^-1.
The b-jets are identified using either a lifetime-based method, where secondary
decay vertices of b-hadrons in jets are reconstructed using information from
the tracking detectors, or a muon-based method where the presence of a muon is
used to identify semileptonic decays of b-hadrons inside jets. The inclusive
b-jet cross-section is measured as a function of transverse momentum in the
range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet
cross-section is measured as a function of the dijet invariant mass in the
range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets
and the angular variable chi in two dijet mass regions. The results are
compared with next-to-leading-order QCD predictions. Good agreement is observed
between the measured cross-sections and the predictions obtained using POWHEG +
Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet
cross-section. However, it does not reproduce the measured inclusive
cross-section well, particularly for central b-jets with large transverse
momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final
version published in European Physical Journal
- …
