1,778 research outputs found
Propagator of a Charged Particle with a Spin in Uniform Magnetic and Perpendicular Electric Fields
We construct an explicit solution of the Cauchy initial value problem for the
time-dependent Schroedinger equation for a charged particle with a spin moving
in a uniform magnetic field and a perpendicular electric field varying with
time. The corresponding Green function (propagator) is given in terms of
elementary functions and certain integrals of the fields with a characteristic
function, which should be found as an analytic or numerical solution of the
equation of motion for the classical oscillator with a time-dependent
frequency. We discuss a particular solution of a related nonlinear Schroedinger
equation and some special and limiting cases are outlined.Comment: 17 pages, no figure
Anisotropic optical response of the diamond (111)-2x1 surface
The optical properties of the 21 reconstruction of the diamond (111)
surface are investigated. The electronic structure and optical properties of
the surface are studied using a microscopic tight-binding approach. We
calculate the dielectric response describing the surface region and investigate
the origin of the electronic transitions involving surface and bulk states. A
large anisotropy in the surface dielectric response appears as a consequence of
the asymmetric reconstruction on the surface plane, which gives rise to the
zigzag Pandey chains. The results are presented in terms of the reflectance
anisotropy and electron energy loss spectra. While our results are in good
agreement with available experimental data, additional experiments are proposed
in order to unambiguously determine the surface electronic structure of this
interesting surface.Comment: REVTEX manuscript with 6 postscript figures, all included in uu file.
Also available at http://www.phy.ohiou.edu/~ulloa/ulloa.html Submitted to
Phys. Rev.
Brane Inflation, Solitons and Cosmological Solutions: I
In this paper we study various cosmological solutions for a D3/D7 system
directly from M-theory with fluxes and M2-branes. In M-theory, these solutions
exist only if we incorporate higher derivative corrections from the curvatures
as well as G-fluxes. We take these corrections into account and study a number
of toy cosmologies, including one with a novel background for the D3/D7 system
whose supergravity solution can be completely determined. This new background
preserves all the good properties of the original model and opens up avenues to
investigate cosmological effects from wrapped branes and brane-antibrane
annihilation, to name a few. We also discuss in some detail semilocal defects
with higher global symmetries, for example exceptional ones, that could occur
in a slightly different regime of our D3/D7 model. We show that the D3/D7
system does have the required ingredients to realise these configurations as
non-topological solitons of the theory. These constructions also allow us to
give a physical meaning to the existence of certain underlying homogeneous
quaternionic Kahler manifolds.Comment: Harvmac, 115 pages, 9 .eps figures; v2: typos corrected, references
added and the last section expanded; v3: Few minor typos corrected and
references added. Final version to appear in JHE
Muon-Spin Rotation Spectra in the Mixed Phase of High-T_c Superconductors : Thermal Fluctuations and Disorder Effects
We study muon-spin rotation (muSR) spectra in the mixed phase of highly
anisotropic layered superconductors, specifically Bi_2+xSr_2-xCaCu_2O_8+delta
(BSCCO), by modeling the fluid and solid phases of pancake vortices using
liquid-state and density functional methods. The role of thermal fluctuations
in causing motional narrowing of muSR lineshapes is quantified in terms of a
first-principles theory of the flux-lattice melting transition. The effects of
random point pinning are investigated using a replica treatment of liquid state
correlations and a replicated density functional theory. Our results indicate
that motional narrowing in the pure system, although substantial, cannot
account for the remarkably small linewidths obtained experimentally at
relatively high fields and low temperatures. We find that satisfactory
agreement with the muSR data for BSCCO in this regime can be obtained through
the ansatz that this ``phase'' is characterized by frozen short-range
positional correlations reflecting the structure of the liquid just above the
melting transition. This proposal is consistent with recent suggestions of a
``pinned liquid'' or ``glassy'' state of pancake vortices in the presence of
pinning disorder. Our results for the high-temperature liquid phase indicate
that measurable linewidths may be obtained in this phase as a consequence of
density inhomogeneities induced by the pinning disorder. The results presented
here comprise a unified, first-principles theoretical treatment of muSR spectra
in highly anisotropic layered superconductors in terms of a controlled set of
approximations.Comment: 50 pages Latex file, including 10 postscript figure
Helicity Analysis of Semileptonic Hyperon Decays Including Lepton Mass Effects
Using the helicity method we derive complete formulas for the joint angular
decay distributions occurring in semileptonic hyperon decays including lepton
mass and polarization effects. Compared to the traditional covariant
calculation the helicity method allows one to organize the calculation of the
angular decay distributions in a very compact and efficient way. In the
helicity method the angular analysis is of cascade type, i.e. each decay in the
decay chain is analyzed in the respective rest system of that particle. Such an
approach is ideally suited as input for a Monte Carlo event generation program.
As a specific example we take the decay () followed by the nonleptonic decay for which we show a few examples of decay distributions which are
generated from a Monte Carlo program based on the formulas presented in this
paper. All the results of this paper are also applicable to the semileptonic
and nonleptonic decays of ground state charm and bottom baryons, and to the
decays of the top quark.Comment: Published version. 40 pages, 11 figures included in the text. Typos
corrected, comments added, references added and update
Stability of self-consistent solutions for the Hubbard model at intermediate and strong coupling
We present a general framework how to investigate stability of solutions
within a single self-consistent renormalization scheme being a parquet-type
extension of the Baym-Kadanoff construction of conserving approximations. To
obtain a consistent description of one- and two-particle quantities, needed for
the stability analysis, we impose equations of motion on the one- as well on
the two-particle Green functions simultaneously and introduce approximations in
their input, the completely irreducible two-particle vertex. Thereby we do not
loose singularities caused by multiple two-particle scatterings. We find a
complete set of stability criteria and show that each instability, singularity
in a two-particle function, is connected with a symmetry-breaking order
parameter, either of density type or anomalous. We explicitly study the Hubbard
model at intermediate coupling and demonstrate that approximations with static
vertices get unstable before a long-range order or a metal-insulator transition
can be reached. We use the parquet approximation and turn it to a workable
scheme with dynamical vertex corrections. We derive a qualitatively new theory
with two-particle self-consistence, the complexity of which is comparable with
FLEX-type approximations. We show that it is the simplest consistent and stable
theory being able to describe qualitatively correctly quantum critical points
and the transition from weak to strong coupling in correlated electron systems.Comment: REVTeX, 26 pages, 12 PS figure
Mode excitation from sources in two-dimensional EBG waveguides using the array scanning method
Recommended from our members
Comparison of Nozzles and Flow Straighteners for Tank Waste Sluicing Applications
Nozzles and flow straighteners were compared to assess the relative quality of the water streams for sluicing waste from underground storage tankes. The criteria for comparison were 1) the impact force produced by the streams over a range of distance from the nozzle impinging on target plates, and 2) the coherence of the streams as manifest by the variation of force on targets of two different sizes. It was determined that 1) the standard Hanford flow straightener is measurable less effective than a commercial firefighting flow straightener at producing a coherent stream when used with the standard Hanford nozzle, and 2) a lighter and more compact firefighting deluge nozzle will deliver a stream of equal quality to that from the Hanford nozzle when either nozzle is used with the commercial flow straightener
Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector
A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results
Measurement of D*+/- meson production in jets from pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
This paper reports a measurement of D*+/- meson production in jets from
proton-proton collisions at a center-of-mass energy of sqrt(s) = 7 TeV at the
CERN Large Hadron Collider. The measurement is based on a data sample recorded
with the ATLAS detector with an integrated luminosity of 0.30 pb^-1 for jets
with transverse momentum between 25 and 70 GeV in the pseudorapidity range
|eta| < 2.5. D*+/- mesons found in jets are fully reconstructed in the decay
chain: D*+ -> D0pi+, D0 -> K-pi+, and its charge conjugate. The production rate
is found to be N(D*+/-)/N(jet) = 0.025 +/- 0.001(stat.) +/- 0.004(syst.) for
D*+/- mesons that carry a fraction z of the jet momentum in the range 0.3 < z <
1. Monte Carlo predictions fail to describe the data at small values of z, and
this is most marked at low jet transverse momentum.Comment: 10 pages plus author list (22 pages total), 5 figures, 1 table,
matches published version in Physical Review
- …
