275 research outputs found
Noise characterization for LISA
We consider the general problem of estimating the inflight LISA noise power
spectra and cross-spectra, which are needed for detecting and estimating the
gravitational wave signals present in the LISA data. For the LISA baseline
design and in the long wavelength limit, we bound the error on all spectrum
estimators that rely on the use of the fully symmetric Sagnac combination
(). This procedure avoids biases in the estimation that would otherwise
be introduced by the presence of a strong galactic background in the LISA data.
We specialize our discussion to the detection and study of the galactic white
dwarf-white dwarf binary stochastic signal.Comment: 9 figure
Annual modulation of the Galactic binary confusion noise bakground and LISA data analysis
We study the anisotropies of the Galactic confusion noise background and its
effects on LISA data analysis. LISA has two data streams of the gravitational
waves signals relevant for low frequency regime. Due to the anisotropies of the
background, the matrix for their confusion noises has off-diagonal components
and depends strongly on the orientation of the detector plane. We find that the
sky-averaged confusion noise level could change by a factor of 2
in three months, and would be minimum when the orbital position of LISA is
either around the spring or autumn equinox.Comment: 13 pages, 6 figure
Optimal filtering of the LISA data
The LISA time-delay-interferometry responses to a gravitational-wave signal
are rewritten in a form that accounts for the motion of the LISA constellation
around the Sun; the responses are given in closed analytic forms valid for any
frequency in the band accessible to LISA. We then present a complete procedure,
based on the principle of maximum likelihood, to search for stellar-mass binary
systems in the LISA data. We define the required optimal filters, the
amplitude-maximized detection statistic (analogous to the F statistic used in
pulsar searches with ground-based interferometers), and discuss the false-alarm
and detection probabilities. We test the procedure in numerical simulations of
gravitational-wave detection.Comment: RevTeX4, 28 pages, 9 EPS figures. Minus signs fixed in Eq. (46) and
Table II. Corrected discussion of F-statistic distribution in Sec. IV
Growing Environmental Activists: Developing Environmental Agency and Engagement Through Childrenâs Fiction.
We explore how story has the potential to encourage environmental engagement and a sense of agency provided that critical discussion takes place. We illuminate this with reference to the philosophies of John Macmurray on personal agency and social relations; of John Dewey on the primacy of experience for philosophy; and of Paul Ricoeur on hermeneutics, dialogue, dialectics and narrative. We view the use of fiction for environmental understanding as hermeneutic, a form of conceptualising place which interprets experience and perception. The four writers for young people discussed are Ernest Thompson Seton, Kenneth Grahame, Michelle Paver and Philip Pullman. We develop the concept of critical dialogue, and link this to Crick's demand for active democratic citizenship. We illustrate the educational potential for environmental discussions based on literature leading to deeper understanding of place and environment, encouraging the belief in young people that they can be and become agents for change. We develop from Zimbardo the key concept of heroic resister to encourage young people to overcome peer pressure. We conclude with a call to develop a greater awareness of the potential of fiction for learning, and for writers to produce more focused stories engaging with environmental responsibility and activism
The first ultracompact Roche lobe-filling hot subdwarf binary
We report the discovery of the first short period binary in which a hot subdwarf star (sdOB) fills its Roche lobe and started mass transfer to its companion. The object was discovered as part of a dedicated high-cadence survey of the Galactic Plane named the Zwicky Transient Facility and exhibits a period of Porb=39.3401(1) min, making it the most compact hot subdwarf binary currently known. Spectroscopic observations are consistent with an intermediate He-sdOB star with an effective temperature of Teff=42,400±300 K and a surface gravity of log(g)=5.77±0.05. A high-signal-to noise GTC+HiPERCAM light curve is dominated by the ellipsoidal deformation of the sdOB star and an eclipse of the sdOB by an accretion disk. We infer a low-mass hot subdwarf donor with a mass MsdOB=0.337±0.015 Mâ and a white dwarf accretor with a mass MWD=0.545±0.020 Mâ. Theoretical binary modeling indicates the hot subdwarf formed during a common envelope phase when a 2.5â2.8 Mâ star lost its envelope when crossing the Hertzsprung Gap. To match its current Porb, Teff, log(g), and masses, we estimate a post-common envelope period of Porbâ150 min, and find the sdOB star is currently undergoing hydrogen shell burning. We estimate that the hot subdwarf will become a white dwarf with a thick helium layer of â0.1 Mâ and will merge with its carbon/oxygen white dwarf companion after â17 Myr and presumably explode as a thermonuclear supernova or form an R CrB star
An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics
For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types
A new class of Roche lobeâfilling hot subdwarf binaries
We present the discovery of the second binary with a Roche lobeâfilling hot subdwarf transferring mass to a white dwarf (WD) companion. This 56 minute binary was discovered using data from the Zwicky Transient Facility. Spectroscopic observations reveal an He-sdOB star with an effective temperature of T eff = 33,700 ± 1000 K and a surface gravity of log(g) = 5.54 ± 0.11. The GTC+HiPERCAM light curve is dominated by the ellipsoidal deformation of the He-sdOB star and shows an eclipse of the He-sdOB by an accretion disk as well as a weak eclipse of the WD. We infer a He-sdOB mass of M sdOB = 0.41 ± 0.04 M â and a WD mass of M WD = 0.68 ± 0.05 M â. The weak eclipses imply a WD blackbody temperature of 63,000 ± 10,000 K and a radius R WD = 0.0148 ± 0.0020 R â as expected for a WD of such high temperature. The He-sdOB star is likely undergoing hydrogen shell burning and will continue transferring mass for â1 Myr at a rate of 10â9 M â yrâ1, which is consistent with the high WD temperature. The hot subdwarf will then turn into a WD and the system will merge in â30 Myr. We suggest that Galactic reddening could bias discoveries toward preferentially finding Roche lobeâfilling systems during the short-lived shell-burning phase. Studies using reddening-corrected samples should reveal a large population of helium coreâburning hot subdwarfs with T eff â 25,000 K in binaries of 60â90 minutes with WDs. Though not yet in contact, these binaries would eventually come into contact through gravitational-wave emission and explode as a subluminous thermonuclear supernova or evolve into a massive single WD
A 62-minute orbital period black widow binary in a wide hierarchical triple
Over a dozen millisecond pulsars are ablating low-mass companions in close binary systems. In the original âblack widowâ, the eight-hour orbital period eclipsing pulsar PSR J1959+2048 (PSR B1957+20)1, high-energy emission originating from the pulsar2 is irradiating and may eventually destroy3 a low-mass companion. These systems are not only physical laboratories that reveal the interesting results of exposing a close companion star to the relativistic energy output of a pulsar, but are also believed to harbour some of the most massive neutron stars4, allowing for robust tests of the neutron star equation of state. Here we report observations of ZTF J1406+1222, a wide hierarchical triple hosting a 62-minute orbital period black widow candidate, the optical flux of which varies by a factor of more than ten. ZTF J1406+1222 pushes the boundaries of evolutionary models5, falling below the 80-minute minimum orbital period of hydrogen-rich systems. The wide tertiary companion is a rare low-metallicity cool subdwarf star, and the system has a Galactic halo orbit consistent with passing near the Galactic Centre, making it a probe of formation channels, neutron star kick physics6 and binary evolution
Driver Fusions and Their Implications in the Development and Treatment of Human Cancers.
Gene fusions represent an important class of somatic alterations in cancer. We systematically investigated fusions in 9,624 tumors across 33 cancer types using multiple fusion calling tools. We identified a total of 25,664 fusions, with a 63% validation rate. Integration of gene expression, copy number, and fusion annotation data revealed that fusions involving oncogenes tend to exhibit increased expression, whereas fusions involving tumor suppressors have the opposite effect. For fusions involving kinases, we found 1,275 with an intact kinase domain, the proportion of which varied significantly across cancer types. Our study suggests that fusions drive the development of 16.5% of cancer cases and function as the sole driver in more than 1% of them. Finally, we identified druggable fusions involving genes such as TMPRSS2, RET, FGFR3, ALK, and ESR1 in 6.0% of cases, and we predicted immunogenic peptides, suggesting that fusions may provide leads for targeted drug and immune therapy
Measurement of the cross section for isolated-photon plus jet production in pp collisions at âs=13 TeV using the ATLAS detector
The dynamics of isolated-photon production in association with a jet in protonâproton collisions at a centre-of-mass energy of 13 TeV are studied with the ATLAS detector at the LHC using a dataset with an integrated luminosity of 3.2 fbâ1. Photons are required to have transverse energies above 125 GeV. Jets are identified using the anti- algorithm with radius parameter and required to have transverse momenta above 100 GeV. Measurements of isolated-photon plus jet cross sections are presented as functions of the leading-photon transverse energy, the leading-jet transverse momentum, the azimuthal angular separation between the photon and the jet, the photonâjet invariant mass and the scattering angle in the photonâjet centre-of-mass system. Tree-level plus parton-shower predictions from Sherpa and Pythia as well as next-to-leading-order QCD predictions from Jetphox and Sherpa are compared to the measurements
- âŠ