17,054 research outputs found
Time-Dependent Behavior of Linear Polarization in Unresolved Photospheres, With Applications for The Hanle Effect
Aims: This paper extends previous studies in modeling time varying linear
polarization due to axisymmetric magnetic fields in rotating stars. We use the
Hanle effect to predict variations in net line polarization, and use geometric
arguments to generalize these results to linear polarization due to other
mechanisms. Methods: Building on the work of Lopez Ariste et al., we use simple
analytic models of rotating stars that are symmetric except for an axisymmetric
magnetic field to predict the polarization lightcurve due to the Hanle effect.
We highlight the effects for the variable line polarization as a function of
viewing inclination and field axis obliquity. Finally, we use geometric
arguments to generalize our results to linear polarization from the weak
transverse Zeeman effect. Results: We derive analytic expressions to
demonstrate that the variable polarization lightcurve for an oblique magnetic
rotator is symmetric. This holds for any axisymmetric field distribution and
arbitrary viewing inclination to the rotation axis. Conclusions: For the
situation under consideration, the amplitude of the polarization variation is
set by the Hanle effect, but the shape of the variation in polarization with
phase depends largely on geometrical projection effects. Our work generalizes
the applicability of results described in Lopez Ariste et al., inasmuch as the
assumptions of a spherical star and an axisymmetric field are true, and
provides a strategy for separating the effects of perspective from the Hanle
effect itself for interpreting polarimetric lightcurves.Comment: 6 pages; 4 figures. Includes an extra figure found only in this
preprint versio
Near-Infrared Polarimetric Adaptive Optics Observations of NGC 1068: A torus created by a hydromagnetic outflow wind
We present J' and K' imaging linear polarimetric adaptive optics observations
of NGC 1068 using MMT-Pol on the 6.5-m MMT. These observations allow us to
study the torus from a magnetohydrodynamical (MHD) framework. In a 0.5" (30 pc)
aperture at K', we find that polarisation arising from the passage of radiation
from the inner edge of the torus through magnetically aligned dust grains in
the clumps is the dominant polarisation mechanism, with an intrinsic
polarisation of 7.0%2.2%. This result yields a torus magnetic field
strength in the range of 482 mG through paramagnetic alignment, and
139 mG through the Chandrasekhar-Fermi method. The measured
position angle (P.A.) of polarisation at K is found to be similar to the
P.A. of the obscuring dusty component at few parsec scales using infrared
interferometric techniques. We show that the constant component of the magnetic
field is responsible for the alignment of the dust grains, and aligned with the
torus axis onto the plane of the sky. Adopting this magnetic field
configuration and the physical conditions of the clumps in the MHD outflow wind
model, we estimate a mass outflow rate 0.17 M yr at 0.4
pc from the central engine for those clumps showing near-infrared dichroism.
The models used were able to create the torus in a timescale of 10
yr with a rotational velocity of 1228 km s at 0.4 pc. We conclude
that the evolution, morphology and kinematics of the torus in NGC 1068 can be
explained within a MHD framework.Comment: 14 pages, 4 figures, Accepted by MNRA
On the difference of torus geometry between hidden and non-hidden broad line active galactic nuclei
We present results from the fitting of infrared (IR) spectral energy
distributions of 21 active galactic nuclei (AGN) with clumpy torus models. We
compiled high spatial resolution (-- arcsec) mid-IR -band
spectroscopy, -band imaging and nuclear near- and mid-IR photometry from the
literature. Combining these nuclear near- and mid-IR observations, far-IR
photometry and clumpy torus models, enables us to put constraints on the torus
properties and geometry. We divide the sample into three types according to the
broad line region (BLR) properties; type-1s, type-2s with scattered or hidden
broad line region (HBLR) previously observed, and type-2s without any published
HBLR signature (NHBLR). Comparing the torus model parameters gives us the first
quantitative torus geometrical view for each subgroup. We find that NHBLR AGN
have smaller torus opening angles and larger covering factors than those of
HBLR AGN. This suggests that the chance to observe scattered (polarized) flux
from the BLR in NHBLR could be reduced by the dual effects of (a) less
scattering medium due to the reduced scattering volume given the small torus
opening angle and (b) the increased torus obscuration between the observer and
the scattering region. These effects give a reasonable explanation for the lack
of observed HBLR in some type-2 AGN.Comment: 13 pages, 5 figures, accepted for publication in Ap
Genetic variability of Phytophthora sojae isolates from Argentina
Phytophthora sojae causes root and stem rot, one of the most important diseases of soybean worldwide. Genetic diversity of 32 Phytophthora sojae isolates of different geographic origin from Argentina was evaluated with RAPD markers. The isolates were collected from diseased soybean plants and soil samples from Santa Fe, Buenos Aires, Córdoba and Entre Ríos provinces, in the Pampeana Region. DNA was amplified with 20 decanucleotides primers. Seven primers amplified 49 fragments, of which 35 were polymorphic, indicating high variability. RAPD analysis detected intraspecific variability even among isolates of the same geographic origin. © 2007 by The Mycological Society of America.Fil:Gally, M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Ramos, A.M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Dokmetzian, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Lopez, S.E. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina
Measurement of the cross-section and charge asymmetry of bosons produced in proton-proton collisions at TeV with the ATLAS detector
This paper presents measurements of the and cross-sections and the associated charge asymmetry as a
function of the absolute pseudorapidity of the decay muon. The data were
collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with
the ATLAS experiment at the LHC and correspond to a total integrated luminosity
of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements
varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the
1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured
with an uncertainty between 0.002 and 0.003. The results are compared with
predictions based on next-to-next-to-leading-order calculations with various
parton distribution functions and have the sensitivity to discriminate between
them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables,
submitted to EPJC. All figures including auxiliary figures are available at
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13
Measurement of the mass and lifetime of the baryon
A proton-proton collision data sample, corresponding to an integrated
luminosity of 3 fb collected by LHCb at and 8 TeV, is used
to reconstruct , decays. Using the , decay mode for calibration, the lifetime ratio and absolute
lifetime of the baryon are measured to be \begin{align*}
\frac{\tau_{\Omega_b^-}}{\tau_{\Xi_b^-}} &= 1.11\pm0.16\pm0.03, \\
\tau_{\Omega_b^-} &= 1.78\pm0.26\pm0.05\pm0.06~{\rm ps}, \end{align*} where the
uncertainties are statistical, systematic and from the calibration mode (for
only). A measurement is also made of the mass difference,
, and the corresponding mass, which
yields \begin{align*} m_{\Omega_b^-}-m_{\Xi_b^-} &= 247.4\pm3.2\pm0.5~{\rm
MeV}/c^2, \\ m_{\Omega_b^-} &= 6045.1\pm3.2\pm 0.5\pm0.6~{\rm MeV}/c^2.
\end{align*} These results are consistent with previous measurements.Comment: 11 pages, 5 figures, All figures and tables, along with any
supplementary material and additional information, are available at
https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2016-008.htm
- …
