502 research outputs found
Analytic study on pure bending of metal sheets
In this work, analytical models of pure bending are developed to simulate a particular type of bend test and to determine possible errors arising from approximations used in analyzing experimental data. Analytical models proposed for steels include a theoretical solution of pure bending and a series of finite element models, based on the von Mises yield function, are subjected to different stress and strain conditions. The results show that for steel sheets the difference between measured and calculated results of the moment-curvature behaviour is small and the numerical results from the finite element models indicate that experimental results obtained from the test are acceptable in the range of the pure bending operation. Further for magnesium alloys, which exhibit unsymmetrical yielding, the algorithm of the yield function with a linear isotropic hardening model is implemented by programming a user subroutine in Abaqus for bending simulations of magnesium. The simulations using the proposed user subroutine extract better results than those using the von Mises yield function.<br /
Different brain responses to electro-acupuncture and moxibustion treatment in patients with Crohn's disease
This study aimed to investigate changes in resting state brain activity in remissive Crohn's Disease (CD) patients after electro-acupuncture or moxibustion treatment. Fifty-two CD patients and 36 healthy subjects were enrolled, and 36 patients were equally and randomly assigned to receive either electro-acupuncture or moxibustion treatment for twelve weeks. We used resting state functional magnetic resonance imaging to assess Regional Homogeneity (ReHo) levels, and Crohn's Disease Activity Index (CDAI) and Inflammatory Bowel Disease Questionnaire (IBDQ) scores to evaluate disease severity and quality of life. The results show that (i) The ReHo levels in CD patients were significantly increased in cortical but decreased in subcortical areas, and the coupling between them was declined. (ii) Both treatments decreased CDAI, increased IBDQ scores, and normalized the ReHo values of the cortical and subcortical regions. (iii) ReHo changes in multiple cortical regions were significantly correlated with CDAI score decreases. ReHo changes in several subcortical regions in the electro-acupuncture group, and those of several cortical regions in the moxibustion group, were correlated with reduced CDAI. These findings suggest that both treatments improved cortex-subcortical coupling in remissive CD patients, but electro-acupuncture regulated homeostatic afferent processing network, while moxibustion mainly regulated the default mode network of the brain
Effects of episodic rainfall on a subterranean estuary
Numerical simulations were conducted to examine the effect of episodic rainfall on nearshore groundwater dynamics in a tidally influenced unconfined coastal aquifer, with a focus on both long-term (yearly) and short-term (daily) behavior of submarine groundwater discharge (SGD) and seawater intrusion (SWI). The results showed nonlinear interactions among the processes driven by rainfall, tides, and density gradients. Rainfall-induced infiltration increased the yearly averaged fresh groundwater discharge to the ocean but reduced the extents of the saltwater wedge and upper saline plume as well as the total rate of seawater circulation through both zones. Overall, the net effect of the interactions led to an increase of the SGD. The nearshore groundwater responded to individual rainfall events in a delayed and cumulative fashion, as evident in the variations of daily averaged SGD and salt stored in the saltwater wedge (quantifying the extent of SWI). A generalized linear model (GLM) along with a Gamma distribution function was developed to describe the delayed and prolonged effect of rainfall events on short-term groundwater behavior. This model validated with results of daily averaged SGD and SWI from the simulations of groundwater and solute transport using independent rainfall data sets, performed well in predicting the behavior of the near-shore groundwater system under the combined influence of episodic rainfall, tides, and density gradients. The findings and developed GLM form a basis for evaluating and predicting SGD, SWI, and associated mass fluxes from unconfined coastal aquifers under natural conditions, including episodic rainfall
Perirenal Fat CT Radiomics-Based Survival Model for Upper Tract Urothelial Carcinoma:Integrating Texture Features with Clinical Predictors
Background: Upper tract urothelial carcinoma (UTUC) presents significant challenges in prognostication due to its rarity and complex anatomy. This study introduces a novel approach integrating perirenal fat (PRF) radiomics with clinical factors to enhance prognostic accuracy in UTUC. Methods: The study retrospectively analyzed 103 UTUC patients who underwent radical nephroureterectomy. PRF radiomics features were extracted from preoperative CT scans using a semi-automated segmentation method. Three prognostic models were developed: clinical, radiomics, and combined. Model performance was assessed using concordance index (C-index), time-dependent Area Under the Curve (AUC), and integrated Brier score. Results: The combined model demonstrated superior performance (C-index: 0.784, 95% CI: 0.707–0.861) compared to the radiomics (0.759, 95% CI: 0.678–0.840) and clinical (0.653, 95% CI: 0.547–0.759) models. Time-dependent AUC analysis revealed the radiomics model’s particular strength in short-term prognosis (12-month AUC: 0.9281), while the combined model excelled in long-term predictions (60-month AUC: 0.8403). Key PRF radiomics features showed stronger prognostic value than traditional clinical factors. Conclusions: Integration of PRF radiomics with clinical data significantly improves prognostic accuracy in UTUC. This approach offers a more nuanced analysis of the tumor microenvironment, potentially capturing early signs of tumor invasion not visible through conventional imaging. The semi-automated PRF segmentation method presents advantages in reproducibility and ease of use, facilitating potential clinical implementation
Evaluating the Predictive Capability of Radiomics Features of Perirenal Fat in Enhanced CT Images for Staging and Grading of UTUC Tumours Using Machine Learning
Background: Upper tract urothelial carcinoma (UTUC) often presents with aggressive behaviour, demanding accurate preoperative assessment to guide management. Radiomics-based approaches have shown promise in extracting quantitative features from imaging, yet few studies have explored whether perirenal fat (PRF) radiomics can augment tumour-only models. Methods: A retrospective cohort of 103 UTUC patients undergoing radical nephroureterectomy was analysed. Tumour regions of interest (ROI) and concentric PRF expansions (10–30 mm) were segmented from computed tomography (CT) scans. Radiomic features were extracted using PyRadiomics, filtered by correlation and intraclass correlation coefficients, and integrated with clinical variables (e.g., age, BMI, multifocality). Multiple machine learning models, including MLPClassifier and CatBoost, were evaluated via repeated cross-validation. Performance was assessed using the area under the ROC curve (AUC), sensitivity, specificity, F1-score, and DeLong tests. Results: The best tumour grade model (AUC = 0.961) merged tumour-derived features with a 10 mm PRF margin, exceeding PRF-only (AUC = 0.900) and tumour-only (AUC = 0.934) approaches. However, the improvement over tumour-only was not always statistically significant. For stage prediction, combining tumour and 15 mm PRF features yielded the top AUC of 0.852, surpassing the tumour-alone model (AUC = 0.802) and outperforming PRF-only (AUC ≤ 0.778). PRF features provided an additional predictive value for both grade and stage models. Conclusions: Integrating PRF radiomics with tumour-based analyses enhances predictive accuracy for UTUC grade and stage, suggesting that the tumour microenvironment contains complementary imaging cues. These findings, pending external validation, support the potential for radiomics-driven risk stratification and personalised treatment planning in UTUC
Anhydrite‐Assisted Hydrothermal Metal Transport to the Ocean Floor—Insights From Thermo‐Hydro‐Chemical Modeling
High‐temperature hydrothermal venting has been discovered on all modern mid‐ocean ridges at all spreading rates. Although significant strides have been made in understanding the underlying processes that shape such systems, several first‐order discrepancies between model predictions and observations remain. One key paradox is that numerical experiments consistently show entrainment of cold ambient seawater in shallow high permeability ocean crust causing a temperature drop that is difficult to reconcile with high vent temperatures. We investigate this conundrum using a thermo‐hydro‐chemical model that couples hydrothermal fluid flow with anhydrite‐ and pyrite‐forming reactions in the shallow subseafloor. The models show that precipitation of anhydrite in warming seawater and in cooling hydrothermal fluids during mixing results in the formation of a chimney‐like subseafloor structure around the upwelling, high‐temperature plume. The establishment of such anhydrite‐sealed zones reduces mixing between the hydrothermal fluid and seawater and results in an increase in vent temperature. Pyrite subsequently precipitates close to the seafloor within the anhydrite chimney. Although anhydrite thus formed may be dissolved when colder seawater circulates through the crust away from the spreading axis, the inside pyrite walls would be preserved as veins in present‐day metal deposits, thereby preserving the history of hydrothermal circulation through shallow oceanic crust
Reconstruction of primary vertices at the ATLAS experiment in Run 1 proton–proton collisions at the LHC
This paper presents the method and performance of primary vertex reconstruction in proton–proton collision data recorded by the ATLAS experiment during Run 1 of the LHC. The studies presented focus on data taken during 2012 at a centre-of-mass energy of √s=8 TeV. The performance has been measured as a function of the number of interactions per bunch crossing over a wide range, from one to seventy. The measurement of the position and size of the luminous region and its use as a constraint to improve the primary vertex resolution are discussed. A longitudinal vertex position resolution of about 30μm is achieved for events with high multiplicity of reconstructed tracks. The transverse position resolution is better than 20μm and is dominated by the precision on the size of the luminous region. An analytical model is proposed to describe the primary vertex reconstruction efficiency as a function of the number of interactions per bunch crossing and of the longitudinal size of the luminous region. Agreement between the data and the predictions of this model is better than 3% up to seventy interactions per bunch crossing
Difference in regional neural fluctuations and functional connectivity in Crohn’s disease: a resting-state functional MRI study
Patients with Crohn’s disease (CD) are shown to have abnormal changes in brain structures. This study aimed to further investigate whether these patients have abnormal brain activities and network connectivity. Sixty patients with CD and 40 healthy controls (HCs) underwent resting-state functional magnetic resonance imaging (fMRI) scans. Amplitude of low-frequency fluctuation (ALFF) and seed-based functional connectivity (FC) were used to assess differences in spontaneous regional brain activity and functional connectivity. Compared to the HCs, patients with CD showed significantly higher ALFF values in hippocampus and parahippocampus (HIPP/paraHIPP), anterior cingulate cortex, insula, superior frontal cortex and precuneus. The ALFF values were significantly lower in secondary somatosensory cortex (S2), precentral gyrus, and medial prefrontal cortex. Functional connectivities between left HIPP and left inferior temporal cortex, and right middle cingulate cortex, HIPP, and fusiform area were significantly lower. The functional connectivities between right HIPP and right inferior orbitofrontal cortex and left HIPP were also significantly lower. Patients with CD showed higher or lower spontaneous activity in multiple brain regions. Altered activities in these brain regions may collectively reflect abnormal function and regulation of visceral pain and sensation, external environmental monitoring, and cognitive processing in these patients. Lower functional connectivity of the hippocampus-limbic system was observed in these patients. These findings may provide more information to elucidate the neurobiological mechanisms of the disease
- …
