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Abstract High‐temperature hydrothermal venting has been discovered on all modern mid‐ocean ridges
at all spreading rates. Although significant strides have been made in understanding the underlying
processes that shape such systems, several first‐order discrepancies between model predictions and
observations remain. One key paradox is that numerical experiments consistently show entrainment of cold
ambient seawater in shallow high permeability ocean crust causing a temperature drop that is difficult to
reconcile with high vent temperatures. We investigate this conundrum using a thermo‐hydro‐chemical
model that couples hydrothermal fluid flow with anhydrite‐ and pyrite‐forming reactions in the shallow
subseafloor. The models show that precipitation of anhydrite in warming seawater and in cooling
hydrothermal fluids during mixing results in the formation of a chimney‐like subseafloor structure around
the upwelling, high‐temperature plume. The establishment of such anhydrite‐sealed zones reduces mixing
between the hydrothermal fluid and seawater and results in an increase in vent temperature. Pyrite
subsequently precipitates close to the seafloor within the anhydrite chimney. Although anhydrite thus
formed may be dissolved when colder seawater circulates through the crust away from the spreading axis,
the inside pyrite walls would be preserved as veins in present‐day metal deposits, thereby preserving the
history of hydrothermal circulation through shallow oceanic crust.

1. Introduction

Black smokers on the modern seafloor are the spectacular manifestations of deep hydrothermal processes
that vent hot metal‐rich fluids into the ocean. The chimney structures at the seafloor are formed as a result
of focused fluid flow and mineral precipitation processes. They are primarily composed of sulfide minerals
(e.g., pyrite, pyrrhotite, chalcopyrite, and sphalerite), sulfates (anhydrite and barite) and amorphous silica
(Haymon, 1983; Tivey, 2007). Many vent systems are associated with polymetallic massive sulfide deposits
at and below the seafloor (e.g., Hannington et al., 2005). Around these chimneys, unique chemosynthetic
ecosystems exist in the otherwise bleak environment of the deep sea.

Much has been learned about hydrothermal circulation systems from surveys of mid‐ocean ridge segments
and direct observations of venting at the seafloor (e.g., deMartin et al., 2007; Fornari et al., 2012; Hannington
et al., 2005; Tao et al., 2012). However, the processes in the deep reservoir that control the chemistry and
physics of the hydrothermal fluids remain largely inaccessible to direct sampling and observations. Here,
theoretical work can help to link seafloor observations to the physicochemical regime at depth. Recent
advances in hydrothermal flowmodeling have revealed the key thermodynamic and fluid‐dynamic controls
on hydrothermal convection and vent temperatures at oceanic spreading centers. The observed upper limit
to black smoker vent temperatures of approx. 400°C has been explained by the thermodynamic properties of
water, and high‐resolution 3‐D flow models have unraveled complex hydrothermal convection patterns at
ocean spreading centers (Coumou et al., 2008; Fontaine et al., 2014; Hasenclever et al., 2014; Jupp &
Schultz, 2000; Weis et al., 2014). While these insights provide a robust theoretical basis for hydrothermal
flow observations at mid‐ocean ridges, a number of first order discrepancies between model predictions
and observations remain.
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One key parameter controlling hydrothermal flow pattern and, thereby, hydrothermal mass and energy
fluxes is permeability. Permeability versus depth profiles can be inferred from laboratory and in situ mea-
surements in bore holes and on drill cores (Becker & Fisher, 2000; Fisher, 1998), seismic data
(Carlson, 2014; Ingebritsen & Manning, 2010), hydrothermal heat fluxes (Lowell & Germanovich, 1994;
Wilcock & McNabb, 1996), and the poro‐elastic response to tidal phase shifts (Barreyre et al., 2014, 2018;
Barreyre & Sohn, 2016; Crone et al., 2011; Xu et al., 2017). All of these data sets point to high permeabilities
between 10−14 and 10−12 m2 (and sometimes up to 10−10 m2) in the oceanic layer 2A decreasing exponen-
tially with depth to values of 10−16 to 10−14 m2 in layer 2B and below—with some estimates based on hydro-
thermal heat fluxes and tidal phase shifts giving higher values of up to approx. 10−11 to 10−10 m2 (Crone
et al., 2011; Wilcock & McNabb, 1996). While the absolute values, the exponential dependence on depth,
and the large permeability contrast between layer 2A and 2B appear intuitive and plausible, the inferred
values pose a major problem to hydrothermal flow simulations. Numerical experiments consistently show
that high permeabilities lead to the increased entrainment of cold ambient seawater which causes a tempera-
ture drop that is difficult to reconcile with high vent temperatures (Andersen et al., 2015; Driesner, 2010;
Lowell et al., 2003, 2007).

Mineral precipitation reactions are one plausible mechanism that can affect hydrothermal flow and modu-
late mixing processes. Cann and Strens (1989) formulated the clogged shell model to explain episodic mega-
plume emissions. Their model aimed at reconciling the required high permeabilities within the
hydrothermal circulation zone necessary to sustainmegaplume emissionswith themuch lower baseline flow
rates at black smoker systems. Megaplume emissions may occur when tectonic activity and/or hydrofractur-
ing reopen pathways in the upflow zone that were previously clogged by sulfide and quartz precipitation dur-
ing the waning phases of the previous megaplume event. Fontaine et al. (2007) extended the clogged outer
shell model to model the effect of a low permeability shell on vent salinities and exit temperatures.
Probably the most spectacular manifestations of reaction‐modulated transport in black smoker system are
hydrothermal chimneys at the ocean floor. In most cases, they are cemented by and/or enveloped by anhy-
drite (Hannington et al., 1998; Tivey, 2007). The seafloor chimneys focus the discharge of hot fluids over tens
ofmeters into the coldwater column. It is likely that similarmineral precipitations focus the upflow of hydro-
thermal fluids below the seafloor, for example in “pipe‐like” vein networks that tap the geothermal reservoir
(Lowell et al., 2003; Tivey, 2007). Large volumes of anhydrite may precipitate near the surface (e.g., in the
chimney, mound, and stockwork structures) and are also found in the deeper hydrothermal feeder zones
(e.g., Humphris et al., 1995). This is evident in the ODP 158 data from the trans‐Atlantic Geotraverse
(TAG) hydrothermal mound, which was found to mainly consist of anhydrite, pyrite, silica, and chalcopyrite
pointing to the importance of hydrothermal precipitates in focusing hydrothermal upflow towards individual
vent sites (Humphris et al., 1995). Anhydrite, which has a retrograde stability, precipitates from heated sea-
water upon the reaction Ca2+ + SO4

2− = CaSO4 in regions where temperatures reach between ~145°C and
300°C (formation window, Figure 1). It is likely to occur in areas where cold seawater is entrained into the
hot discharge flow (Bischoff et al., 1996; Fontaine et al., 2001; Kawada & Yoshida, 2010; Lowell &
Yao, 2002). However, at temperatures exceeding ~300°C, anhydrite is unstable and the evolving hydrother-
mal fluid becomes more acidic. The remaining SO4

2− is progressively reduced to aqueous sulfide, and H2S
becomes the dominant sulfur species in hydrothermal fluids (e.g., Chiba et al., 2001; Foustoukos &
Seyfried, 2005; Seyfried & Janecky, 1985). At this stage, the fluid further reacts with the basaltic wall‐rock
and becomes enriched in, for example, calcium, iron, copper, zinc, lead, and other tracemetals as well as H2S
(e.g., German&VonDamm, 2003; VonDamm, 1995). The hot rising hydrothermalfluid is therefore enriched
in metals (incl. Iron, copper, zinc, lead, and other trace metals), H2S, and Ca. As the fluid reaches maximum
temperatures (~400°C), it becomes increasingly buoyant and starts to ascend from the reaction zone towards
the seafloor. Around this upflow zone, additional amounts of anhydrite can precipitate, when the fluid cools
to temperatures within the thermal formation window of anhydrite upon mixing with entrained SO4

2−
‐rich

seawater. These processes are likely to build a chimney‐like anhydrite structure around the upflow zone.
Finally, sulfideminerals such as pyrite and chalcopyrite precipitate directly from the high‐temperature fluids
upon cooling below ~310°C in response to conductive as well as adiabatic cooling and/or themixingwith sea-
water (Figure 1).

These processes may be particularly important for enabling hot hydrothermal fluids to reach the seafloor to
form metal deposits. The question is how widespread is this process? Under which conditions and over
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which time scales does anhydrite begin to precipitate and form a seal around the hydrothermal upflow
zones? And, what are the implications for large‐scale fluid flow and heat removal at mid‐ocean ridges?
About 90% of the axial discharge at mid‐ocean ridge appears to be by diffuse, low‐temperature flow,
implying widespread shallow mixing and cooling between hot (~350°C) hydrothermal fluids and ambient
seawater (Baker et al., 1993; Ginster et al., 1994; Ramondenc et al., 2006; Rona & Trivett, 1992; Schultz
et al., 1992; Schultz & Elderfield, 1997). If only 10% of the heat transport at the ridges occurs at black
smoker temperatures, then the amount of metal that can be delivered to the seafloor within the
neovolcanic zone is much lower than the amount initially mobilized from the reaction zone
(Hannington, 2013). Thus, anhydrite precipitation may be a fundamentally important process for metal
fluxes to the seafloor.

Here, building on previous modeling work by, for example, Fontaine et al. (2001), Lowell et al. (2003), and
Kawada and Yoshida (2010), we investigate the interplay between hydrothermal flow, permeability changes,
chemical reactions, and metal transport within a 2‐D thermo‐hydro‐chemical model that simulates hydro-
thermal flow along with anhydrite and pyrite formation in the subseafloor.

2. Mathematical Model
2.1. Numerical Model of Hydrothermal Flow

The hydrothermal flow calculations are based on Darcy flow of pure water, in which fluid velocities are pro-
portional to the excess pressure gradient via the fluid's viscosity and the rock's permeability:

v!¼ −
k
μf

∇p − ρf g
!� �

; (1)

where v! is the Darcy velocity, k is permeability, μf is the fluid's dynamic viscosity, ρf is the fluid's density,
p is pressure, and g! is gravitational acceleration vector. The fluid and rock properties are referred to with
subscripts f and r, respectively. All parameters and their values are listed in Table 1.

Mass conservation is expressed as

ϕ
∂ρf
∂t

¼ −∇ · v!ρf
� �

; (2)

with ϕ being the rock porosity. Note that compaction phenomena are neglected, and porosity is taken out
of the time derivative. Closure of pore space by precipitation reactions is tracked via saturation changes.
Substituting Equation 1 into 2 and noting that the fluid's density is a function of temperature T and pres-
sure p yields the pressure equation,

Figure 1. Example reaction‐path‐modeling result using “Geochemist's workbench” and the SUPCRT92 thermodynamic database. The model predicts the
precipitation sequence and abundance of hydrothermal minerals for a given starting composition. Panel (a) shows the result for an average EPR fluid, panel
(b) shows the evolution of predominant aqueous iron species that ultimately control the amount of pyrite formation, and panel (c) shows total dissolved iron in
fluid.
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ϕρf βf
∂p
∂t

− αf
∂T
∂t

� �
¼∇ · ρf

k
μf

∇p − ρf g
!� � !

; (3)

where αf and βf are the fluid's thermal expansivity and compressibility, respectively. Energy conservation
of a single‐phase fluid can be expressed using a temperature formulation,

ϕρfcpf þ 1 − ϕð Þρrcpr
� �∂T

∂t
¼ ∇ · λr∇Tð Þ − ρf cpf v

! · ∇T þ μf
k
v!2

−
∂lnρf
∂lnT

� �
p

Dp
Dt

; (4)

with cp being heat capacity, λr is the bulk thermal conductivity of porous rock, and Sf fluid saturation
(the remaining volume fraction of the pore space not occupied by precipitated mineral phases). Fluid
and rock are assumed to be in local thermal equilibrium (i.e., T = Tr = Tf) so that the mixture appears
on the left‐hand side of Equation 4. Changes in temperature depend on conductive heat transport, advec-
tive heat transport by fluid flow, heat generation by internal friction of the fluid, and pressure‐volume
work. All fluid properties are functions of both pressure and temperature and are evaluated from precal-
culated lookup tables based on the IAPS‐84 formulation of water and steam properties. The tables have
been computed using the program PROST 4.1 (Bauer, 1998). The hydrothermal flow model is implemen-
ted using a finite element formulation, and the details can be found in Hasenclever et al. (2014) and its
supplement.

Table 1
Definitions and Values of Parameters Used in This Study

Symbol Definition Value Unite

k Permeability m2

k0 Initial permeability m2

υ! Darcy velocity m s−1

p Pressure Pa

g! Gravitational acceleration vector 9.81 m s−2

S Saturation ‐

M Mass kg
ψ Mass fraction

Fluid properties (IAPS 1984 thermodynamic tables, PROST 4.1)
cpf Specific heat capacity of fluid J kg−1°C−1

μf Fluid's dynamic viscosity m−1 kg s−1

ρf Fluid's density kg m−1

αf Thermal expansivity °C−1

βf Thermal compressibility Pa

Rock properties
cpr Specific heat capacity of rock 880 J kg−1°C−1

λr Thermal conductivity of rock 1.5 W m−1°C−1

ρr Density of rock 2,750 kg m−1

ϕ Porosity of rock 10 %

Chemical species
Ci Concentration (mass fraction) of chemical species kg/kg
Qi Source term kg/s
Dc Chemical diffusivity 10–8 m2 s−1

Ksp
a′ Apparent solubility product of anhydrite mol kg−1

Ksp
a Effective solubility product of anhydrite ‐

Kp Solubility of pyrite kg/kg

Subscripts
f Fluid
r Rock
a Anhydrite
p Pyrite
fap Fluid, anhydrite, and pyrite
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2.2. Chemical Transport

The dissolved aqueous species Ca2+ and SO4
2− involved in anhydrite formation are transported by fluid

flow. Conservation of each chemical species can be expressed as,

∂ϕSf ρf Ci

∂t
¼ ∇ · ϕρf Sf Dc∇Ci

� �
−∇ · ϕSf ρf Ci v

!� �
þ Qi; i ¼ Ca2þ; SO2−

4 ; pyrite; (5)

where Ci is the concentration of each species, which is expressed as mass fraction in unit of kg‐ion/kg‐solu-
tion, Sf is fluid saturation, Qi is the source term which represents concentration change when precipitation
or dissolution occurs, and Dc is the chemical diffusion coefficient. In addition, we track a quantity called
pyrite formation potential (see below), which also has units of kg/kg and represents the amount of pyrite
that can still precipitate from the hydrothermal fluid. Note that we do not account for a density change in
the fluid as a function of chemical composition.

2.3. Chemical Reaction Model

When a hydrothermal fluid cools conductively and/or by mixing with ambient seawater, it undergoes a
sequence of precipitation reactions. Here, we focus on two hydrothermal minerals, anhydrite, and pyrite,
which are likely to have the biggest impact on flow pattern. The temperature‐dependent saturation limit
of anhydrite in seawater is expressed via the solubility product (e.g., Krauskopf & Bird, 1995).

Ca2þ
� 	

SO2−
4

� 	
≡ Ka′

sp Tð Þ; (6)

where [Ca2+], [SO4
2−] are the concentrations of Ca2+, SO4

2− in units of mol/kg‐solution. Ksp
a′(T) is the

apparent solubility product in units of mol2/kg2 (e.g., Kawada & Yoshida, 2010) of anhydrite. To be con-
sistent with units of concentration in Equation 5, we transform the units in Equation 6 to mass fraction

Ka
sp ¼

MCa2þ

1000

MSO2−
4

1000
Ka′

sp Tð Þ; (7)

whereMCa2þ ¼ 40; MSO2−
4
¼ 96 in units of g/mol are the molecular weights of Ca2+ and SO2−

4 , respectively.

Here, Ka
sp Tð Þ is the non‐dimensional effective solubility product of anhydrite and we here use the parame-

terization of Kawada and Yoshida (2010), which is plotted in Figure 2a:

Figure 2. Solubility product of anhydrite (a) and “pyrite formation potential” (b). The dash‐dotted line in a shows the
CCa

2+·CSO4
2−T relation, when seawater is heated. The average concentrations of Ca2+ and SO4

2− in seawater are
4.1 × 10−4 kg/kg and 2.7 × 10−3 kg/kg, respectively. Anhydrite precipitates when seawater is heated beyond ~145°C (the
intersection of dotted line and solid curve), and the anhydrite mass fraction as a function of temperature is shown
by the green line and green axis. In (b), the solid black line denotes the “pyrite formation potential,” which is defined as
the amount of pyrite that can still precipitate from the fluid upon cooling. The initial value of 67.2 mg/kg was determined
by reaction path modeling using the initial fluid composition listed in Table 2. The red line shows the amount of
precipitated pyrite.
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Ka
sp Tð Þ ¼ 6:124 × 10−12e

5:0594×103
Tþ273 ; (8)

Precipitation of anhydrite occurs when CCa2þ · CSO2−
4
> Ka

sp and dissolution happens if the concentrations

are lower than the saturation state and anhydrite is present. The related changes in concentration can
be expressed as

Ka
sp ¼ CCa2þ þ dCCa2þð Þ × CSO2−

4
þ dCSO2−

4

� �
; (9a)

dCSO2−
4
¼ MSO2−

4

MCa2þ
dCCa2þ ; (9b)

with dCca
2+ and dCSO4

2− being the concentration changes of Ca2+ and SO4
2− so that the fluid composition

is back in equilibrium with the effective solubility product. dCCa2þ can be calculated from Equation 9 by a
quadratic equation with one or two roots. For precipitation, dCCa2þ is the negative root, while in the dis-
solution case it is the positive root. In addition, to keep mass conserved, we compare the theoretical mass
change of Ca2+ in the fluid with mass of Ca2+ in anhydrite and adopt the minimum of them.

dMCa2þ ¼ min dCCa2þSf ρf ;
MaMCa2þ

MCa2þ þMSO2−
4

" #
; (10a)

dCCa2þ ¼ dMCa2þ=Sf =ρf ; (10b)

where min is the minimum function.

Implementing pyrite‐forming reactions is less straightforward because dissolved iron and sulfur in a hydro-
thermal fluid are mostly present in form of aqueous complexes. When a hydrothermal fluid approaches
metal saturation during the process of cooling and/or mixing with seawater, pyrite precipitates as part of
a sulfide and nonsulfide mineral assemblage. Even though pyrite represents the main sink for Fe, it can also
be accommodated in other mineral such as chalcopyrite, isocubanite andmagnetite. The abundance of these
minerals, their mass fractions, and the timing of mineralization are controlled by the source‐rock geochem-
istry, the initial fluid chemistry, and the depositional mechanism, for example, changes in T, pH, redox state
(Fuchs et al., 2019). To address the complex conditions of pyrite formation, preceding geochemical model
simulations including speciation calculations are required. For these models, we use the thermodynamic
constants for aqueous, mineral, and gaseous species from the most recent version of the SUPCRT92 database
(Johnson et al., 1992; Shock et al., 1997; Sverjensky et al., 1997) augmented by some additional thermody-
namic data (Table S1 in the supporting information). The B‐dot equation, an extension of the Debye‐
Hückel equation (Helgeson, 1969), was used to calculate activity coefficients for charged aqueous species.
An activity coefficient of one was assumed for neutral aqueous species, except nonpolar species for which
activity coefficients were used (Drummond & Ohmoto, 1985). In order to calculate the speciation of aqueous
and gaseous components in hydrothermal fluid and in seawater during conductive and adiabatic cooling
(from vent to ambient temperature), we use the software package Geochemist's Workbench (GWB) 12
(Bethke, 2008), which uses a law of mass action approach to compute of equilibrium state of the system.
For this purpose, we have integrated the thermodynamic data of the aqueous and mineral species in the
most recent version of the SUPCRT92 database (Johnson et al., 1992; Shock et al., 1997; Sverjensky
et al., 1997) into GWB using the software tool DBCreate (Kong et al., 2013). DBCreate generates the required
file of equilibrium constants for GWB from the native format in SUPCRT92. This combination of SUPCRT92
and GWB has been successfully used in previous studies (Fuchs et al., 2019; Simmons et al., 2016; Webber
et al., 2017) and is a convenient way of performing model calculations under seafloor hydrothermal condi-
tions of up to 350°C and within single‐phase fluid states.

The presented simulations have been done in the context of mid‐ocean ridge‐associated hydrothermal sys-
tems, and we have used an average composition of an end‐member high temperature fluid from the East
Pacific Rise (EPR) as input (Hannington et al., 2016)—see Table 2. Figure 1 presents a reaction‐path model
showing the mass of mineral precipitation during the conductive cooling of an average EPR fluid of given
composition from 350°C to an ambient temperature of 2°C at constant pressure of 500 bar and closed
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system conditions. The sulfide minerals chalcopyrite and pyrite are the first to precipitate and therefore
likely the ones with the largest impact on high‐temperature (>300°C) fluid flow. Only when the fluid
reaches lower temperatures (<180°C), the minerals sphalerite, galena, gold, silver, and quartz start to
precipitate. The models exhibit that among the sulfide minerals, pyrite is abundant in highest mass
fractions; therefore, we here only consider its impact on hydrothermal flow.

The most consistent approach to resolve pyrite precipitation and dissolution in a reaction‐transport hydro-
thermal model would be to track the entire chemical composition of the fluid and to recompute the stable
mineral assemblage and fluid composition at every computational point. While this will be hopefully feasi-
ble in future reaction‐transport models, we feel it is appropriate, for now to explore a simple parameteriza-
tion designed to single out the effect that pyrite precipitation may have on hydrothermal upflow. Hence, we
make the simplifying assumption of a closed system that conductively cools from hydrothermal to seawater
temperature. Under these assumptions, pyrite formation is limited by the availability of aqueous iron species
(Figure 1). From the amount of pyrite precipitating from the fluid (Figure 1a), we derive a quantity that we
call pyrite formation potential (Figure 2b). This quantity is a function of temperature only (for a given start-
ing composition) and for practical purposes, we fit a polynomial to it:

Kp ¼ −2:4608 × 10−10T5 þ 2:3537 × 10−7T4 − 7:7876 × 10−5T3 þ 1:0235 × 10−2T2 − 0:2092T þ 1:6374:

(11)

This quantity can be used in a very similar way as the anhydrite solubility product discussed above. If the
fluid's pyrite formation potential is higher than its local temperature‐dependent value, pyrite precipitation

Table 2
Boundary Conditions and Input Data for Reaction Path Modeling

Boundary conditions: Outlet Sides Inlet

T 5°C Insulated 400°C
P 30 MPa Zero flux flux (11.5 g m−1 s−1)

Chemistry Seawater EPR
pH (25 °C) 7.8 3.4
Major elements
Na mg kg−1 10,667 9,932
K mg kg−1 395 907
Ca mg kg−1 409 625 (400–4,000)
Mg mg kg−1 1,269 0
Fe mg kg−1 2.8 × 10−5 92.9
Si mg kg−1 1.97 494
Cl mg kg−1 19,150 17,340
SO4 mg kg−1 2,712 0
CO2 mg kg−1 na 930
H2S mg kg−1 0 250
H2 mg kg−1 6 × 10−7 0.86
Trace metals
Zn mg kg−1 0.0003 6.9
Cu mg kg−1 0.0002 2.2
Pb μg kg−1 0.0021 63.8
Ni μg kg−1 0.47 81
As μg kg−1 1.7 19
Cd μg kg−1 0.067 9
Co μg kg−1 0.0012 7.8
Tl μg kg−1 0.014 6.5
Mo μg kg−1 10 4
Ag μg kg−1 0.0022 4
Se μg kg−1 0.13 5.7
Sb μg kg−1 0.195 1.1
Au μg kg−1 3 × 10−5 0.08
Pyrite formation potential mg kg−1 0 67.2

Note. Active components in flow model are marked in bold.
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occurs. If the fluid's value is lower than its local temperature‐dependent value and pyrite is already pre-
sent, dissolution of pyrite occurs.

Changes in the fluid's pyrite formation potential can be calculated by Equation 12,

dCp ¼ Kp − Cp: (12)

Pyrite will precipitate when dCp is negative, and if dCp is positive, the pyrite will dissolve. To keep mass
conservation, dCp should be determined by Equation 13 when in the pyrite dissolution situation.

dMp ¼ min dCpSf ρf ;Mp

� �
; (13a)

dCp ¼ dMp=Sf =ρf ; (13b)

where dMp is the mass change of pyrite and Mp is the mass of pyrite.

After all concentration changes are calculated, the relative saturations can be updated:

Sf ¼
ψf

ρf ψf =ρf þ ψa=ρa þ ψp=ρp
� � (14a)

Sa ¼ ψa

ρa ψf =ρf þ ψa=ρa þ ψp=ρp
� � (14b)

Sp ¼
ψp

ρp ψf =ρf þ ψa=ρa þ ψp=ρp
� � (14c)

where ψf = Sf ρf/Mfap, ψa = Ma/Mfap, ψp = Mp/Mfap are the mass fractions of fluid, anhydrite, and pyr-
ite, respectively. Mfap = Sfρf + Ma + Mp is the total mass. ρa, Ma and ρp, Mp are density and mass of
anhydrite and pyrite.

2.4. Permeability Feedback From Reactions

Fluid‐rock interaction has a major influence on both rock and fluid properties (Cann et al., 2015; Ingebritsen
et al., 2010; Lowell et al., 2003), and here we focus on reaction‐induced permeability changes and how they
affect fluid flow and vent temperatures. The interplay of permeability and fluid flow has been investigated in
vent fluid studies (e.g., Shinohara, 2008; Von Damm, 1990), in numerical simulations (e.g., Scott &
Driesner, 2018; Symonds et al., 2001), and in laboratory experiments (e.g., Bischoff et al., 1996;
Foustoukos & Seyfried, 2007). Numerically, the permeability feedback of reactions is usually based on the
Kozeny‐Carman correlation (Bear, 1972), for example in CSMP++GEM (Yapparova et al., 2017) and
TOUGHREACT (Xu et al., 2006). In our model, the permeability feedback of mineral precipitation is simpli-
fied as

k ¼ S3f k0; (15)

where k0 is the initial permeability and Sf is the fluid saturation, see Equation 14a. Thus, a closed system
of equations is assembled, and the solution strategy is outlined in Figure 3.

2.5. Scope and Model Limitations

Fluid‐rock interaction and dissolved species transport in submarine hydrothermal systems are highly com-
plex processes. The presented parameterizations are only approximations of natural systems and should be
used with these limitations in mind:
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1. The model is single‐phase, and the chemical reaction parameteriza-
tions are not directly transferrable to multiphase situations, where
chemical species partition between vapor and liquid phases.

2. The chemical parameterizations are only valid for T < 350°C, and no
chemical changes occur until the hydrothermal fluid has cooled from
its initial temperature of 400°C down to 350°C. This restriction has
been made to stay within the validity range of the underlying thermo-
dynamic calculations.

3. The complexity of sulfide mineralization is not fully captured by the
presented parameterization, and it should not be used to “understand”
chemical systems. It has been solely derived to study feedbacks
between flow and pyrite precipitation reactions.

4. The “pyrite formation potential” is only valid for the assumed initial
average EPR fluid composition and closed system conditions. See, for
example, Fuchs et al. (2019) for information on how initial fluid com-
position affect precipitation sequences.

5. We use prescribed initial compositions of seawater and hydrothermal
fluids. Element mobilization by fluid‐rock interactions is not resolved.

These assumptions allow us to single out the effect that permeability
changes induced by mineral precipitation reactions may have on the over-

all flow patterns. By demonstrating the importance of this feedback, we hope to inspire future work that will
make a more rigorous coupling between multiphase transport and a comprehensive thermodynamic model.

3. Model Setup
3.1. Geometry

The model setup is illustrated in Figure 4 and has been designed to be simple yet able to capture the key
aspects of hydrothermal transport through a zone of enhanced permeability. The pipe‐like inlet in the lower
region mimics a focused upflow zone in the deeper crust (e.g., layer 2B) where permeability is sufficiently
low (kc = 10−15 m2) to allow for high‐temperature fluid flow. The upper region represents a zone of higher
permeability (e.g., extrusive layer 2A), has a thickness hext = 300 m, and a higher permeability kext. To avoid
boundary effects, the lateral extent of the domain has been set to a large value of 1,200 m. Both regions are
discretized with a triangular mesh with the highest resolution of 0.3 m in the central upflow region.

3.2. Boundary and Initial Conditions

The different boundary conditions are shown as different colors in Figure 4: sides (black), outlet (magenta),
and inlet (red). In correspondence to the heat and chemical transport equations in sections 2.1 and 2.2,
boundary conditions for T, P, and Ci are applied (Table 2). The sides (black line in Figure 4) are impermeable

Figure 3. Flow chart of main algorithm for the reactive transport model in
this study.

Figure 4. Geometric model with triangular mesh used in the simulation. The cyan and light green color show the extrusive layer with higher permeability kext
and deep crust with lower permeability kc, respectively. The red, magenta, and black represent inlet, outlet, and sides boundaries.
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and have zero concentration and temperature gradients. Constant pressure (30 MPa) is assumed at the top
boundary (magenta) and at inflow nodes a constant temperature (5°C) and composition (seawater) is
assumed. At outflow nodes, the thermal and concentration gradients are zero to allow for free venting.

The bottom of the pipe‐like inlet has a constant temperature (400°C) and a prescribed fluid mass influx of
11.5 g/m/s. This mass flux value is consistent with high‐temperature (>350°C) venting for permeabilities
<10−14 m2 (Driesner, 2010, Figure 5a). The injected fluids have a prescribed chemical composition taken
from a representative EPR fluid (Hannington et al., 2016), and the values are summarized in Table 2.
Note that fluid‐rock interactions are not implemented; instead, the influx boundary condition is used to
inject fluids with a prescribed chemistry. The modeling domain is initialized to be at a constant temperature
of 5°C and seawater composition.

4. Results
4.1. Baseline Simulations

An initial set of four reference simulations with different permeabilities in the top layer is conducted to illus-
trate the overall fluid dynamic system behavior. Mineral precipitation and dissolution do not occur in these
reference simulations. Figure 5 summarizes the results. With increasing permeability, the vertical mass flux
at the seafloor increases to values higher than the prescribed influx of 11.5 g/m/s at the basal inlet due to
entrainment of colder ambient fluids causing a decrease in vent temperature. Velocities increase and the
upflow zone becomes more focused and narrower. High temperature venting (>350°C) only occurs at
permeabilities <1 × 10−14 m2, which again demonstrates the fundamental problem of reconciling
high‐temperature venting with high permeabilities in numerical models.

4.2. Impact of Anhydrite and Pyrite Precipitation

The next set of simulations not only is the same as the reference set but also allows for precipitation and dis-
solution of anhydrite and pyrite. In these simulations, we use the upper limit 4,000 mg/kg Ca2+ in the hydro-
thermal fluid (Table 2), which is also the value that Kawada and Yoshida (2010) used in their study; the
effects of varying the Ca content of the hydrothermal fluids will be discussed later. Figure 6 shows the tem-
poral evolution of a reactive‐transport simulation with kext= 4 × 10−14 m2 (see also Movie S1). Chimney‐like
structures of anhydrite and pyrite progressively form around the central upflow zone, which become effec-
tively separated from the recharge flow. These sidewalls form in three distinct ways. First, anhydrite starts
precipitating from the warming seawater at temperatures higher than ~145°C that recharges the central
upflow of entrained fluids. This process forms the outermost part of the sidewalls starting at the interface
between the two layers and grows towards the surface forming the outer anhydrite wall. The second process
forms an inner anhydrite wall due to the cooling and mixing of hot hydrothermal fluids with entrained sea-
water in the central upflow zone. The upwelling hydrothermal fluid is devoid of sulfate but enriched in cal-
cium due to fluid‐rock interactions in the reaction zone (which are not resolved in this study). When these
fluids mix with seawater, further anhydrite precipitation occurs around the central upflow zone. Lastly, pyr-
ite forms when the hydrothermal fluids cool below ~300°C forming a cap‐like pyrite structure.

Figure 5. Fluid temperature field of the reference model at 3,000 year with (a) kext = 1 × 10−14 m2,
(b) kext = 4 × 10−14 m2. (c) shows vent temperature (black) and mass flux (orange) at the seafloor as a function of
permeability of the top layer.
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After 250 years, mixing and cooling is still intense and pyrite precipitates well below the seafloor
(Figures 6a–6c). Over time, more anhydrite forms and mixing is reduced. Consequently, the ascending
hydrothermal fluids remain hot enough to carry metals, and pyrite is precipitated further up the upwelling
zone (Figure 6). After 1,000 years, a pyrite deposit begins to form at the seafloor, and after 5,000 years, a
stable upflow zone, separated by anhydrite walls from ambient seawater, is established, and pyrite is more
effectively transported to the seafloor as the shoaling of the pyrite precipitation zone shows.

Figure 7 shows that these precipitations reactions scale positively with the permeability of the upper layer.
The more seawater is entrained, the higher is the rate of anhydrite formation. Likewise, the time to create a
chimney structure scales directly with permeability. These precipitation reactions result in a strong drop in
permeability around the central upflow zone (Figure 7, lowermost panel) causing a significant reduction in
mixing between seawater and hydrothermal fluid.

This finding is confirmed in Figure 8, which shows vent temperature evolution and the final discharge mass
flux for the different runs.While vent temperatures remain stable in simulations without reactions, they pro-
gressively increase in those with reactions. The reason for this is the reduction of seawater entrainment as
the upflow zone becomes progressively isolated by precipitation reactions. Total final discharge mass fluxes
(15.6–26.5 g/m/s) are significantly higher than the inflow boundary condition (11.5 g/m/s), which shows
how significant the entrainment of ambient seawater is over the investigated range of crustal permeabilities.
Note that these 2‐D values are per meter of ridge axis; to compare to observed/inferred hydrothermal dis-
charge rates, the values need to be multiplied by a representative along‐axis distance. Entrainment results
in dilution and cooling of the upwelling hydrothermal fluid. Such mixing and entrainment processes
become more important with higher permeability, which is reflected in the model with the highest perme-
ability (k = 1 × 10−13 m2), where the total discharge is more than twice the inflow boundary condition (26.5
vs 11.5 g/m/s).

After 5,000 years, the predicted increases in vent temperature are still moderate (<25°C) yet significant due
to the strong temperature dependence of pyrite solubility, which we here for simplicity also treat as a proxy
for metal transport (Equation 11). In order to constrain the long‐term evolution and maximum plausible
increase in vent temperature, we have performed a number of additional model runs. Figure 9 shows the

Figure 6. Temporal evolution of reactive‐transport simulation with kext = 4 × 10−14 m2. Fluid temperature field, fraction of pore space filled with hydrothermal
minerals, and permeability are shown in the top, middle, and bottom rows, respectively. The lines with arrows in the top row are the streamlines of fluid flow.
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long‐term evolution of models with permeabilities of 4 × 10−14 m2 and 1 × 10−13 m2 plus one end‐member
run that illustrates the maximum plausible increase. Those runs show that vent temperatures continue to
increase as the chimney structures become increasingly less permeable. The end‐member case has been
calculated by taking the precipitation pattern predicted by the 4 × 10−14 m2 model run and setting the
relative permeability to a very small value, effectively making the chimney structure impermeable. In this
limiting case, the maximum increase in vent temperature is 90°C, showing how significant the effect of
precipitation reactions can be.

4.3. Sensitivity

The presented simulations have shown that the precipitation of pyrite and especially of anhydrite can have a
profound effect on predicted flow patterns, flow rates, and thereby vent temperatures. In a final set of simu-

lations, we have explored the sensitivity of the results to variations in
fluid chemistry. In the context of this study, the main uncertainty is
the Ca concentration in the injected fluid. In natural systems, Ca is
mobilized from the host rock at high temperatures within the root
(reaction) zone of a black smoker system. The amount of calcium
mobilized in this way is a complex function of fluid‐rock ratios, fluid
chemistry, rock type, and temperature. Here, we do not resolve this
complexity but treat the Ca content of the injected hydrothermal
fluid as a prescribed model parameter. The observed range of Ca con-
centrations in EPR vent fluids is (8–4,248 mg/kg), with the average
being 625 mg/kg (Hannington et al., 2016; Shanks, 2001). All simula-
tions presented above used a value of 4,000 mg/kg, which is also the
value that Kawada and Yoshida (2010) used. Figure 10 illustrates the
implications of this parameter choice—and how a different choice for
the initial Ca‐content of the hydrothermal fluid would affect model
predictions. Panel (a) shows the expected result with the amount of
anhydrite forming increasing with increasing Ca content in the

Figure 7. Simulation results at 3,000 year of three models with different kext are collected in three columns, left 1 × 10−14, middle 4 × 10−14, and right
7 × 10−14 m2, respectively. Three rows show fluid temperature field (a, d, g), saturation of anhydrite and pyrite (b, e, h), and permeability (c, f, i), respectively.
The lines with arrow in the upper row are fluids stream lines.

Figure 8. Vent temperature as a function of time. Lines in different colors
represent model with different kext values. Solid lines and dotted lines show
results of models with and without reactions, respectively. Texts in different
colors show total discharge mass flux (in unit of g/m/s) on the top boundary of
corresponding models after 5,000 years.
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injected fluid. However, the scaling between the two is small: a
10‐fold increase in Ca content of the injected fluid results only in a
30% increase in total anhydrite formed after 3,000 years simulation
time. The main reason for this sublinear scaling is that the amount
of anhydrite forming is mainly limited by availability of sulfate dur-
ingmixing with seawater, and the rate of seawater entrainment is pri-
marily a function of permeability (Figure 10b). Interestingly, the rates
of anhydrite formation decrease with increasing simulation time and
the amount of anhydrite formed becomes progressively insensitive to
permeability. The reason is that upflow becomes increasingly sepa-
rated from entrained seawater due to the clogging of the pore space.

5. Discussion

This paper links reaction‐path modeling in seafloor hydrothermal
systems to heat and fluid flow simulations in the context of subsea-
floor mineral precipitation. The model runs were constructed to
explore the conditions under which anhydrite precipitates in the sub-
seafloor and how that affects flow patterns and heat transport.

The models show that mineral precipitation reactions are significant contributors to isolated and focused
hydrothermal upflow. Anhydrite precipitation in the subsurface forms chimney‐like structures that are in
many ways analogous to hydrothermal chimneys observed at and above the seafloor. These chimney‐like
structures, sometimes referred to as pipe‐like vein networks in the geological literature (Hannington
et al., 1998), form in two ways: (1) by direct precipitation from warming seawater and (2) through subse-
quent mixing with calcium‐rich, sulfate‐free hydrothermal fluids. These two reactions are primarily limited
by the availability of sulfate, which comes exclusively from seawater. As a result, anhydrite formation scales
directly with the amount of seawater entrained by the system and therefore the permeability. In the pre-
sented simplified simulations, pyrite formation, in turn, is primarily controlled by conductive and adiabatic
cooling, which is regarded as the main driver of sulfide mineral precipitation (e.g., Tivey, 1995; Tivey &
McDuff, 1990). In natural systems, such processes are more complex, and pyrite mineralization is further
influenced by the magmatic contribution of metals (Fe) and H2S, the physicochemical regime (e.g., pH,
redox state), geochemical gradients in the cooling fluids, seawater mixing, and/or phase separation phenom-
ena. Resolving this complexity is beyond the scope of this study but will hopefully be addressed in future
thermo‐hydro‐chemical models that will couple transport and the thermodynamics of hydrothermal
systems.

One important feedback in the presented model system appears to be that the increase in the total mass flux
due to entrainment of cold fluids, which initially causes a decrease in vent temperature, also results in an
increase in the rate of anhydrite deposition at depth that eventually focuses the upflow, thus increasing

Figure 9. Long‐term evolution of models with permeabilities of 4 × 10−14 m2

and 1 × 10−13 m2 plus one end‐member run. Long‐term evolution of models
with permeabilities of 4 × 10−14 m2 and 1 × 10−13 m2 plus one end‐member run
in which the reaction zone is assumed impermeable. This end‐member case
shows the maximum plausible temperature increase due to anhydrite and pyrite
precipitation. The simulation results are extrapolated after model run times of 22
and 34 kyrs, respectively.

Figure 10. Total amount of anhydrite forming as a function of Ca concentration in the injected hydrothermal fluid (a)
and permeability (b).

10.1029/2019JB019035Journal of Geophysical Research: Solid Earth

GUO ET AL. 13 of 18



discharge temperatures. Higher temperature venting occurs at the seafloor despite the high bulk permeabil-
ity of the shallow crust. Time‐series show that increased fluid entrainment into the system causes increased
subseafloor precipitation and the development of a focused upflow zone (Figure 7). The formation of a pyrite
cap is also an important part of this process. Unlike anhydrite, which is ultimately replaced (or dissolved
because of its retrograde solubility), a pyrite‐sealed zone may be particularly important for focusing fluids
near the seafloor over time. In this case, continued hydrothermal upflow (possibly during multiple episodes
of venting), could result in overpressuring and fracturing of the relatively impermeable pyrite cap, providing
long‐lived pathways for high‐temperature fluids to reach the seafloor. In this way, anhydrite, and to lesser
extents metal sulfides such as pyrite, precipitation ensures that a large proportion of the metals initially
mobilized from the deep reaction zones actually make it to the seafloor forming present‐day larger deposits.

The above findings are related to the fundamental question of how high‐temperature upflow zones become
established in otherwise highly permeable oceanic crust. At slow‐spreading ridges, where large and deeply
penetrating faults are preferential pathways for hydrothermal flow, the proportion of focused flow is high,
which can be explained by structural permeability contrasts (e.g., Andersen et al., 2015). Fast spreading
ridges are characterized by numerous shallow faults and very high crustal permeabilities down to at least
300 m, corresponding to the top of the dike section resulting in a high proportion of diffuse flow
(Elderfield & Schultz, 1996; Fornari et al., 2012). Here, reactions like anhydrite precipitation may play a
key role in focusing flow (Lowell et al., 2003, 2012; Sleep, 1991). Building on those previous studies, the mod-
els presented here show that focused flow of high‐temperature fluids can be established in highly permeable
substrates even in the absence of a controlling structure via the formation of sub‐seafloor anhydrite‐
chimneys.

While these findings point to interesting interrelations between fluid focusing and mineral precipitation
reactions, it is likely that also other processes are important for rapid fluid focusing. In the presented calcu-
lations, anhydrite‐chimneys form on 100–1,000 year timescales, while individual magmatic events have a
recurrence rate of ~10–20 years at fast‐spreading ridges. One possible way to reconcile these differing time-
scales is to assume even higher permeabilities in the shallow crust. Lowell et al. (2003) showed that anhy-
drite precipitation can help establishing a focused flow zone even within years following a magmatic
event if crustal permeabilities are sufficiently high (10−11 to 10−12 m2). We here explored permeabilities of
10−13–10−14 m2, yet our results point in the same direction with the rate of anhydrite precipitation scaling
directly with permeability. Furthermore, we have driven the models with a prescribed mass influx of
0.015 kg/s/m, which in combination with the 400°C boundary condition corresponds to a hydrothermal heat
flux of 23 MWper kilometer ridge axis. This is approximately the long‐term thermal plus magmatic heat flux
of a slow‐spreading ridge opening at a full rate of 30 mm/year (Sinha & Evans, 2004). Inferred vent field
hydrothermal heat fluxes from point measurements and water columns observations can be up to two orders
of magnitude higher ranging between 28 MW at Broken Spur to 1,700 MW at TAG along the slow‐spreading
Mid‐Atlantic Ridge and between 50 MW at Salty Dawg and 551 MW at Northern Cleft along the intermedi-
ate Juan de Fuca Ridge (Lowell et al., 2013). This shows that hydrothermal heat flux can transiently be much
higher than the assumed long‐term average heat flux used in the models. Under such transient conditions,
chimney structures are likely to formmore rapidly thereby reconciling the different time scales. It is also pos-
sible that mechanical feedbacks, such as hydrofracturing (Weis et al., 2012), and or fracture flow instead of
pervasive Darcy flow (Mezon et al., 2018) help to focus fluid flow on short time scales.

It should also be noted that our reaction‐transport model is highly simplified. We have here singled out the
effect of anhydrite and pyrite on flow within the upflow zone. Natural systems, precipitation of other
mineral phases is also likely to impact on flow. For example, quartz precipitation close to the reaction zone
has been linked to heat transfer from the driving heat source into the hydrothermal flow zone (Steele‐
MacInnis et al., 2012). We have also neglected fluid‐rock interaction with the consequence that element
mobilization and redeposition cannot be self‐consistently resolved. It is our hope that our here presented
findings will help to formulate future self‐consistent reaction‐transport hydrothermal models.

6. Conclusions

We have shown how mineral precipitation reactions form chimney‐like structures in the sub‐seafloor
through which hydrothermal fluids may eventually discharge without mixing significantly with ambient
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colder ambient fluids. This chemical feedback may help to explain how focused high‐temperature flow can
be established after a magmatic event, for example, within highly permeable shallow oceanic crust. An
important consequence appears to be the increase in the total mass flux with increasing permeability due
to entrainment of cold fluids that initially cause not only a decrease in vent temperature but also an increase
in anhydrite deposition at depth. Eventually, the upflow zone becomes sealed and discharge velocities and
temperatures increase. The result is higher‐temperature venting at the seafloor despite the increased perme-
ability below the seafloor. Interestingly, this process is likely to leave little imprint in the geological record.
Anhydrite is not preserved as the system cools, leaving behind only sulfide‐bearing vein networks and altera-
tion “pipes” with no trace of the original anhydrite (Sleep, 1991). The only evidence that anhydrite might
have formed would be the persistence of alteration minerals formed at temperatures that would have caused
anhydrite deposition. An interesting question for future investigation is the process of focusing fluid flow in
ancient hydrothermal systems where SO4

2− concentrations were too low (de Ronde et al., 1997) to allow pre-
cipitation of anhydrite (e.g., in early Archean oceans or in younger reduced basins). In this case, focusing of
hydrothermal discharge could not have been due to sealing by anhydrite, but other minerals such as carbo-
nate and/or quartz must have been involved. Dissolution of anhydrite formed at the ridge as the crust moves
away from heat sources will leave behind only the metal sulfide structures which make up present‐day sub-
seafloor stockworks.

Data Availability Statement

All data files and processing script are accessible through figshare 10.6084/m9.figshare.10347839
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