4,776 research outputs found

    Casimir Effect and Global Theory of Boundary Conditions

    Full text link
    The consistency of quantum field theories defined on domains with external borders imposes very restrictive constraints on the type of boundary conditions that the fields can satisfy. We analyse the global geometrical and topological properties of the space of all possible boundary conditions for scalar quantum field theories. The variation of the Casimir energy under the change of boundary conditions reveals the existence of singularities generically associated to boundary conditions which either involve topology changes of the underlying physical space or edge states with unbounded below classical energy. The effect can be understood in terms of a new type of Maslov index associated to the non-trivial topology of the space of boundary conditions. We also analyze the global aspects of the renormalization group flow, T-duality and the conformal invariance of the corresponding fixed points.Comment: 11 page

    Thermodynamic glass transition in a spin glass without time-reversal symmetry

    Get PDF
    Spin glasses are a longstanding model for the sluggish dynamics that appears at the glass transition. However, spin glasses differ from structural glasses for a crucial feature: they enjoy a time reversal symmetry. This symmetry can be broken by applying an external magnetic field, but embarrassingly little is known about the critical behaviour of a spin glass in a field. In this context, the space dimension is crucial. Simulations are easier to interpret in a large number of dimensions, but one must work below the upper critical dimension (i.e., in d<6) in order for results to have relevance for experiments. Here we show conclusive evidence for the presence of a phase transition in a four-dimensional spin glass in a field. Two ingredients were crucial for this achievement: massive numerical simulations were carried out on the Janus special-purpose computer, and a new and powerful finite-size scaling method.Comment: 10 pages, 6 figure

    Nature of the spin-glass phase at experimental length scales

    Full text link
    We present a massive equilibrium simulation of the three-dimensional Ising spin glass at low temperatures. The Janus special-purpose computer has allowed us to equilibrate, using parallel tempering, L=32 lattices down to T=0.64 Tc. We demonstrate the relevance of equilibrium finite-size simulations to understand experimental non-equilibrium spin glasses in the thermodynamical limit by establishing a time-length dictionary. We conclude that non-equilibrium experiments performed on a time scale of one hour can be matched with equilibrium results on L=110 lattices. A detailed investigation of the probability distribution functions of the spin and link overlap, as well as of their correlation functions, shows that Replica Symmetry Breaking is the appropriate theoretical framework for the physically relevant length scales. Besides, we improve over existing methodologies to ensure equilibration in parallel tempering simulations.Comment: 48 pages, 19 postscript figures, 9 tables. Version accepted for publication in the Journal of Statistical Mechanic

    Differential Regularization of Topologically Massive Yang-Mills Theory and Chern-Simons Theory

    Full text link
    We apply differential renormalization method to the study of three-dimensional topologically massive Yang-Mills and Chern-Simons theories. The method is especially suitable for such theories as it avoids the need for dimensional continuation of three-dimensional antisymmetric tensor and the Feynman rules for three-dimensional theories in coordinate space are relatively simple. The calculus involved is still lengthy but not as difficult as other existing methods of calculation. We compute one-loop propagators and vertices and derive the one-loop local effective action for topologically massive Yang-Mills theory. We then consider Chern-Simons field theory as the large mass limit of topologically massive Yang-Mills theory and show that this leads to the famous shift in the parameter kk. Some useful formulas for the calculus of differential renormalization of three-dimensional field theories are given in an Appendix.Comment: 25 pages, 4 figures. Several typewritten errors and inappropriate arguments are corrected, especially the correct adresses of authors are give

    The 2HWC HAWC Observatory Gamma Ray Catalog

    Full text link
    We present the first catalog of TeV gamma-ray sources realized with the recently completed High Altitude Water Cherenkov Observatory (HAWC). It is the most sensitive wide field-of-view TeV telescope currently in operation, with a 1-year survey sensitivity of ~5-10% of the flux of the Crab Nebula. With an instantaneous field of view >1.5 sr and >90% duty cycle, it continuously surveys and monitors the sky for gamma ray energies between hundreds GeV and tens of TeV. HAWC is located in Mexico at a latitude of 19 degree North and was completed in March 2015. Here, we present the 2HWC catalog, which is the result of the first source search realized with the complete HAWC detector. Realized with 507 days of data and represents the most sensitive TeV survey to date for such a large fraction of the sky. A total of 39 sources were detected, with an expected contamination of 0.5 due to background fluctuation. Out of these sources, 16 are more than one degree away from any previously reported TeV source. The source list, including the position measurement, spectrum measurement, and uncertainties, is reported. Seven of the detected sources may be associated with pulsar wind nebulae, two with supernova remnants, two with blazars, and the remaining 23 have no firm identification yet.Comment: Submitted 2017/02/09 to the Astrophysical Journa

    Measurement of the cross-section and charge asymmetry of WW bosons produced in proton-proton collisions at s=8\sqrt{s}=8 TeV with the ATLAS detector

    Get PDF
    This paper presents measurements of the W+μ+νW^+ \rightarrow \mu^+\nu and WμνW^- \rightarrow \mu^-\nu cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the 1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured with an uncertainty between 0.002 and 0.003. The results are compared with predictions based on next-to-next-to-leading-order calculations with various parton distribution functions and have the sensitivity to discriminate between them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables, submitted to EPJC. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13
    corecore