340 research outputs found

    New control strategies for neuroprosthetic systems

    Get PDF
    The availability of techniques to artificially excite paralyzed muscles opens enormous potential for restoring both upper and lower extremity movements with\ud neuroprostheses. Neuroprostheses must stimulate muscle, and control and regulate the artificial movements produced. Control methods to accomplish these tasks include feedforward (open-loop), feedback, and adaptive control. Feedforward control requires a great deal of information about the biomechanical behavior of the limb. For the upper extremity, an artificial motor program was developed to provide such movement program input to a neuroprosthesis. In lower extremity control, one group achieved their best results by attempting to meet naturally perceived gait objectives rather than to follow an exact joint angle trajectory. Adaptive feedforward control, as implemented in the cycleto-cycle controller, gave good compensation for the gradual decrease in performance observed with open-loop control. A neural network controller was able to control its system to customize stimulation parameters in order to generate a desired output trajectory in a given individual and to maintain tracking performance in the presence of muscle fatigue. The authors believe that practical FNS control systems must\ud exhibit many of these features of neurophysiological systems

    Technologies for Social Justice: Lessons from Sex Workers on the Front Lines

    Get PDF
    This paper provides analysis and insight from a collaborative process with a Canadian sex worker rights organization called Stella, l'amie de Maimie, where we reflect on the use of and potential for digital technologies in service delivery. We analyze the Bad Client and Aggressor List - a reporting tool co-produced by sex workers in the community and Stella staff to reduce violence against sex workers. We analyze its current and potential future formats as an artefact for communication, in a context of sex work criminalization and the exclusion of sex workers from traditional routes for reporting violence and accessing governmental systems for justice. This paper addresses a novel aspect of HCI research that relates to digital technologies and social justice. Reflecting on the Bad Client and Aggressor List, we discuss how technologies can interact with justice-oriented service delivery and develop three implications for design

    Global Ocean Science Report: The Current Status of Ocean Science around the World

    Get PDF
    The IOC-UNESCO Global Ocean Science Report (GOSR) aims to provide a status report on ocean science. It identifies and quantifies the elements that drive the productivity and performance of ocean science, including workforce, infrastructure, resources, networks and outputs. The report is intended to facilitate international ocean science cooperation and collaboration. It helps to identify gaps in science organization and capacity and develop options to optimize the use of scientific resources and advance ocean science and technology by sharing expertise and facilities, promoting capacity-building and transferring marine technology. As the first consolidated assessment of global ocean science, the GOSR assists the science-policy interface and supports managers, policy-makers, governments and donors, as well as scientists beyond the ocean community. The GOSR offers decision-makers an unprecedented tool to identify gaps and opportunities to advance international collaboration in ocean science and technology and harness its potential to meet societal needs, address global challenges and drive sustainable development for all

    The neural basis of perceived intensity in natural and artificial touch

    Get PDF
    Electrical stimulation of sensory nerves is a powerful tool for studying neural coding because it can activate neural populations in ways that natural stimulation cannot. Electrical stimulation of the nerve has also been used to restore sensation to patients who have suffered the loss of a limb. We have used long-term implanted electrical interfaces to elucidate the neural basis of perceived intensity in the sense of touch. To this end, we assessed the sensory correlates of neural firing rate and neuronal population recruitment independently by varying two parameters of nerve stimulation: pulse frequency and pulse width. Specifically, two amputees, chronically implanted with peripheral nerve electrodes, performed each of three psychophysical tasks-intensity discrimination, magnitude scaling, and intensity matching-in response to electrical stimulation of their somatosensory nerves. We found that stimulation pulse width and pulse frequency had systematic, cooperative effects on perceived tactile intensity and that the artificial tactile sensations could be reliably matched to skin indentations on the intact limb. We identified a quantity we termed the activation charge rate (ACR), derived from stimulation parameters, that predicted the magnitude of artificial tactile percepts across all testing conditions. On the basis of principles of nerve fiber recruitment, the ACR represents the total population spike count in the activated neural population. Our findings support the hypothesis that population spike count drives the magnitude of tactile percepts and indicate that sensory magnitude can be manipulated systematically by varying a single stimulation quantity

    Analysis of reflex modulation with a biologically realistic neural network

    Get PDF
    In this study, a neuromusculoskeletal model was built to give insight into the mechanisms behind the modulation of reflexive feedback strength as experimentally identified in the human shoulder joint. The model is an integration of a biologically realistic neural network consisting of motoneurons and interneurons, modeling 12 populations of spinal neurons, and a one degree-of-freedom musculoskeletal model, including proprioceptors. The model could mimic the findings of human postural experiments, using presynaptic inhibition of the Ia afferents to modulate the feedback gains. In a pathological case, disabling one specific neural connection between the inhibitory interneurons and the motoneurons could mimic the experimental findings in complex regional pain syndrome patients. It is concluded that the model is a valuable tool to gain insight into the spinal contributions to human motor control. Applications lay in the fields of human motor control and neurological disorders, where hypotheses on motor dysfunction can be tested, like spasticity, clonus, and tremor

    Relating reflex gain modulation in posture control to underlying neural network properties using a neuromusculoskeletal model

    Get PDF
    During posture control, reflexive feedback allows humans to efficiently compensate for unpredictable mechanical disturbances. Although reflexes are involuntary, humans can adapt their reflexive settings to the characteristics of the disturbances. Reflex modulation is commonly studied by determining reflex gains: a set of parameters that quantify the contributions of Ia, Ib and II afferents to mechanical joint behavior. Many mechanisms, like presynaptic inhibition and fusimotor drive, can account for reflex gain modulations. The goal of this study was to investigate the effects of underlying neural and sensory mechanisms on mechanical joint behavior. A neuromusculoskeletal model was built, in which a pair of muscles actuated a limb, while being controlled by a model of 2,298 spiking neurons in six pairs of spinal populations. Identical to experiments, the endpoint of the limb was disturbed with force perturbations. System identification was used to quantify the control behavior with reflex gains. A sensitivity analysis was then performed on the neuromusculoskeletal model, determining the influence of the neural, sensory and synaptic parameters on the joint dynamics. The results showed that the lumped reflex gains positively correlate to their most direct neural substrates: the velocity gain with Ia afferent velocity feedback, the positional gain with muscle stretch over II afferents and the force feedback gain with Ib afferent feedback. However, position feedback and force feedback gains show strong interactions with other neural and sensory properties. These results give important insights in the effects of neural properties on joint dynamics and in the identifiability of reflex gains in experiments

    Tizanidine does not affect the linear relation of stretch duration to the long latency M2 response of m. flexor carpi radialis

    Get PDF
    The long latency M2 electromyographic response of a suddenly stretched active muscle is stretch duration dependent of which the nature is unclear. We investigated the influence of the group II afferent blocker tizanidine on M2 response characteristics of the m. flexor carpi radialis (FCR). M2 response magnitude and eliciting probability in a group of subjects receiving 4 mg of tizanidine orally were found to be significantly depressed by tizanidine while tizanidine did not affect the significant linear relation of the M2 response to stretch duration. The effect of tizanidine on the M2 response of FCR is supportive of a group II afferent contribution to a compound response of which the stretch duration dependency originates from a different mechanism, e.g., rebound Ia firing

    A rigorous model of reflex function indicates that position and force feedback are flexibly tuned to position and force tasks

    Get PDF
    This study aims to quantify the separate contributions of muscle force feedback, muscle spindle activity and co-contraction to the performance of voluntary tasks (“reduce the influence of perturbations on maintained force or position”). Most human motion control studies either isolate only one contributor, or assume that relevant reflexive feedback pathways during voluntary disturbance rejection tasks originate mainly from the muscle spindle. Human ankle-control experiments were performed, using three task instructions and three perturbation characteristics to evoke a wide range of responses to force perturbations. During position tasks, subjects (n = 10) resisted the perturbations, becoming more stiff than when being relaxed (i.e., the relax task). During force tasks, subjects were instructed to minimize force changes and actively gave way to imposed forces, thus becoming more compliant than during relax tasks. Subsequently, linear physiological models were fitted to the experimental data. Inhibitory, as well as excitatory force feedback, was needed to account for the full range of measured experimental behaviors. In conclusion, force feedback plays an important role in the studied motion control tasks (excitatory during position tasks and inhibitory during force tasks), implying that spindle-mediated feedback is not the only significant adaptive system that contributes to the maintenance of posture or force

    A review of spatial downscaling of satellite remotely sensed soil moisture

    Get PDF
    Satellite remote sensing technology has been widely used to estimate surface soil moisture. Numerous efforts have been devoted to develop global soil moisture products. However, these global soil moisture products, normally retrieved from microwave remote sensing data, are typically not suitable for regional hydrological and agricultural applications such as irrigation management and flood predictions, due to their coarse spatial resolution. Therefore, various downscaling methods have been proposed to improve the coarse resolution soil moisture products. The purpose of this paper is to review existing methods for downscaling satellite remotely sensed soil moisture. These methods are assessed and compared in terms of their advantages and limitations. This review also provides the accuracy level of these methods based on published validation studies. In the final part, problems and future trends associated with these methods are analyzed
    corecore