321 research outputs found

    The influence of the food environment on overweight and obesity in young children : a systematic review

    Get PDF
    The increasing prevalence of childhood obesity has led to interest in its prevention, particularly through school-based and family-based interventions in the early years. Most evidence reviews, to date, have focused on individual behaviour change rather than the ‘obesogenic environment’. This paper reviews the evidence on the influence of the food environment on overweight and obesity in children up to 8 years. Electronic databases (including MEDLINE, EMBASE, Cochrane Controlled Trials Register (CCTR), DARE, CINAHL and Psycho-Info) and reference lists of original studies and reviews were searched for all papers published up to 31 August 2011. Study designs included were either population-based intervention studies or a longitudinal study. Studies were included if the majority of the children studied were under 9 years, if they related to diet and if they focused on prevention rather than treatment in clinical settings. Data included in the tables were characteristics of participants, aim, and key outcome results. Quality assessment of the selected studies was carried out to identify potential bias and an evidence ranking exercise carried out to prioritise areas for future public health interventions. Thirty-five studies (twenty-five intervention studies and ten longitudinal studies) were selected for the review. There was moderately strong evidence to support interventions on food promotion, large portion sizes and sugar-sweetened soft drinks. Reducing food promotion to young children, increasing the availability of smaller portions and providing alternatives to sugar-sweetened soft drinks should be considered in obesity prevention programmes aimed at younger children. These environment-level interventions would support individual and family-level behaviour change

    UV-optical from space

    Get PDF
    The following subject areas are covered: (1) the science program (star formation and origins of planetary systems; structure and evolution of the interstellar medium; stellar population; the galactic and extragalactic distance scale; nature of galaxy nuclei, AGNs, and QSOs; formation and evolution of galaxies at high redshifts; and cosmology); (2) implementation of the science program; (3) the observatory-class missions (HST; LST - the 6m successor to HST; and next-generation 16m telescope); (4) moderate and small missions (Delta-class Explorers; imaging astrometric interferometer; small Explorers; optics development and demonstrations; and supporting ground-based capabilities); (5) prerequisites - the current science program (Lyman-FUSE; HTS optimization; the near-term science program; data analysis, modeling, and theory funding; and archives); (6) technologies for the next century; and (7) lunar-based telescopes and instruments

    Witnessing the formation of a brightest cluster galaxy at z>2

    Get PDF
    We present deep observations taken with the HST Advanced Camera for Surveys of the central massive galaxy in a forming cluster at z=2.2. The galaxy hosting the powerful radio source MRC 1138-262 is associated with one of the most extensive merger systems known in the early universe. Our HST/ACS image shows many star-forming galaxies merging within a ~200 kpc region that emits both diffuse line emission and continuum in the rest-frame UV. Because this galaxy lives in an overdense environment, it represents a rare view of a brightest cluster galaxy in formation at z>2 which may serve as a testbed for predictions of massive cluster galaxy formation.Comment: Contribution to the proceedings of "The Fate of Gas in Galaxies", Dwingeloo, July 2006, with 2 colour figures. To appear in New Astronomy Reviews, Vol. 51 (2007), eds. Morganti, Oosterloo, Villar-Martin & van Gorko

    Spatio-temporal trends in normal-fault segmentation recorded by low-temperature thermochronology: Livingstone fault scarp, Malawi Rift, East African Rift System

    Get PDF
    The evolution of through-going normal-fault arrays from initial nucleation to growth and subsequent interaction and mechanical linkage is well documented in many extensional provinces. Over time, these processes lead to predictable spatial and temporal variations in the amount and rate of displacement accumulated along strike of individual fault segments, which should be manifested in the patterns of footwall exhumation. Here, we investigate the along-strike and vertical distribution of low-temperature apatite (U–Th)/He (AHe) cooling ages along the bounding fault system, the Livingstone fault, of the Karonga Basin of the northern Malawi Rift. The fault evolution and linkage from rift initiation to the present day has been previously constrained through investigations of the hanging wall basin fill. The new cooling ages from the footwall of the Livingstone fault can be related to the adjacent depocentre evolution and across a relay zone between two palaeo-fault segments. Our data are complimented by published apatite fission-track (AFT) data and reveal significant variation in rock cooling history along-strike: the centre of the footwall yields younger cooling ages than the former tips of earlier fault segments that are now linked. This suggests that low-temperature thermochronology can detect fault interactions along strike. That these former segment boundaries are preserved within exhumed footwall rocks is a function of the relatively recent linkage of the system. Our study highlights that changes in AHe (and potentially AFT) ages associated with the along-strike displacement profile can occur over relatively short horizontal distances (of a few kilometres). This is fundamentally important in the assessment of the vertical cooling history of footwalls in extensional systems: temporal differences in the rate of tectonically driven exhumation at a given location along fault strike may be of greater importance in controlling changes in rates of vertical exhumation than commonly invoked climatic fluctuations

    An XMM-Newton Study of the Hard X-ray Sky

    Full text link
    We report on the spectral properties of a sample of 90 hard X-ray selected serendipitous sources detected in 12 XMM observations with 1<F(2-10)<80 10^(-14) erg/cm2/s. Approximately 40% of the sources are optically identified with 0.1<z<2 and most of them are classified as broad line AGNs. A simple model consisting of power law modified by Galactic absorption offers an acceptable fit to ~65% of the source spectra. This fit yields an average photon index of ~1.55 over the whole sample. We also find that the mean slope of the QSOs in our sample turns out to remain nearly constant (~1.8-1.9) between 0<z<2, with no hints of particular trends emerging along z. An additional cold absorption component with 10^(21)<Nh<10^(23) cm^(-2) is required in ~30% of the sources. Considering only subsamples that are complete in flux, we find that the observed fraction of absorbed sources (i.e. with Nh>~10^(22) cm^(-2)) is ~30%, with little evolution in the range 2<F(2-10)<80 10^(-14) erg/cm2/s. Interestingly, this value is a factor ~2 lower than predicted by the synthesis models of the CXB. This finding, detected for the first time in this survey, therefore suggests that most of the heavily obscured objects which make up the bulk of the CXB will be found at lower fluxes (F(2-10)< 10^(-14) erg/cm2/s). This mismatch together with other recent observational evidences which contrast with CXB model predictions suggest that one (or more) of the assumptions usually included in these models need to be revised.Comment: 20 pages, 13 figures, accepted for publication in A&

    Quasars: the characteristic spectrum and the induced radiative heating

    Full text link
    Using information on the cosmic X-ray background and the cumulative light of active galactic nuclei at infrared wavelengths, the estimated local mass density of galactic massive black holes (MBHs) and published AGN composite spectra in the optical, UV and X-ray, we compute the characteristic angular-integrated, broad-band spectral energy distribution of the average quasar in the universe. We demonstrate that the radiation from such sources can photoionize and Compton heat the plasma surrounding them up to an equilibrium Compton temperature (Tc) of 2x10^7 K. It is shown that circumnuclear obscuration cannot significantly affect the net gas Compton heating and cooling rates, so that the above Tc value is approximately characteristic of both obscured and unobscured quasars. This temperature is above typical gas temperatures in elliptical galaxies and just above the virial temperatures of giant ellipticals. The general results of this work can be used for accurate calculations of the feedback effect of MBHs on both their immediate environs and the more distant interstellar medium of their host galaxies.Comment: 15 pages, 5 figures. Revised version accepted for publication in MNRA

    Numerical modelling of Non-Transform Discontinuity geometry: Implication for ridge structure, volcano-tectonic fabric development and hydrothermal activity at segment ends.

    No full text
    Ocean ridge discontinuities partition and offset spreading centres at a range of scales. Large scale discontinuities (10's–100's km) are synonymous with first-order transform faults, which have well defined linear fault zone valleys. In contrast, Non-Transform Discontinuities (NTDs) are diffuse, smaller scale offsets (0 to b20 km), characterised by central basins or topographic highs. The geometry of NTD offsets can be categorised by the sense of offset, either right-stepping or left-stepping, and by the relative positions of the segment tips. The segment tip configurations include under-lapping, over-lapping or simple across-axis jumps or stepping in the ridge axis. In this study finite difference software is used to model segment geometry at a slow-spreading ridge under a normal tensile-stress within a homogeneous and isotropic medium. Along- and across-axis segment separations were varied incrementally for left- and right-stepping senses. The results show that the ratio of along-axis to across-axis segment tip separation is a dominant control of stress field rotation within an NTD. Features which most clearly show rotation within an NTD include basins and tectonically controlled constructional ridges. The obliquity of these features along with measurements of the surrounding fault fabrics are used as a way of observing and determining stress rotations within NTDs along the Central Indian Ridge (CIR). These rotations were used to obtain segment geometries from models where the central tensor showed an equivalentrotation. The results show that geometry has a profound effect on stress field rotation under which large- and small-scale volcanotectonic fabrics form. In addition, a shortfall of the predicted model tip relative to interpreted positions, along with morphology and observation of the ridge fabrics at the terminations to some segments, suggests the existence of a zone, broadly analogous to theprocess zone observed in fracture mechanics, which we call a damage zone. Given the criteria for the promotion of hydrothermal circulation, this damage zone would have a greater potential for hosting hydrothermal activity.<br/

    Using VO tools to investigate distant radio starbursts hosting obscured AGN in the HDF(N) region

    Full text link
    A 10-arcmin field around the HDF(N) contains 92 radio sources >40 uJy, resolved by MERLIN+VLA at 0".2-2".0 resolution. 55 have Chandra X-ray counterparts including 18 with a hard X-ray photon index and high luminosity characteristic of a type-II (obscured) AGN. >70% of the radio sources have been classified as starbursts or AGN using radio morphologies, spectral indices and comparisons with optical appearance and MIR emission. Starbursts outnumber radio AGN 3:1. This study extends the VO methods previously used to identify X-ray-selected obscured type-II AGN to investigate whether very luminous radio and X-ray emission originates from different phenomena in the same galaxy. The high-redshift starbursts have typical sizes of 5--10 kpc and star formation rates of ~1000 Msun/yr. There is no correlation between radio and X-ray luminosities nor spectral indices at z>~1.3. ~70% of both the radio-selected AGN and the starburst samples were detected by Chandra. The X-ray luminosity indicates the presence of an AGN in at least half of the 45 cross-matched radio starbursts, of which 11 are type-II AGN including 7 at z>1.5. This distribution overlaps closely with the X-ray detected radio sources which were also detected by SCUBA. Stacked 1.4-GHz emission at the positions of radio-faint X-ray sources is correlated with X-ray hardness. Most extended radio starbursts at z>1.3 host X-ray selected obscured AGN. Radio emission from most of these ultra-luminous objects is dominated by star formation but it contributes less than 1/3 of their X-ray luminosity. Our results support the inferences from SCUBA and IR data, that at z>1.5, star formation is an order of magnitude more extended and more copious, it is closely linked to AGN activity and it is triggered differently, compared with star formation at lower redshifts.Comment: 24 pages, 12 figures, uses graphicx, rotating, natbib, supertabular packages and aa.cls. Accepted for publication in A&
    • 

    corecore