2,576 research outputs found
Sulfation degree of glycosaminoglycans triggers distinct cytoskeleton organisation in mesenchymal stem cells
Glycosaminoglycans (GAGs) comprise the closest cellular environment: they are building
elements of the ECM and can be also found on cells surface. Their biological activity depends
on several parameters among which the negative charge is of prime importance[1]. This
charge is generally associated with the presence of sulfate groups (-OSO3H). Sulfation is
a dynamic modification: it can occur at various positions within the glycan and different
sulfation patterns have been identified for the same organs and cells during their
development. However, the mechanisms of coding and transferring information by
these functionalities are not yet complete understood, mainly because of (i)the complex
physiological microenvironment in which GAGs interactions occur and (ii)the inability to access
homogeneous GAGs[2].
In this work, we propose model surfaces bearing GAGs with different sulfation degree as
platform to investigate the pathways by which mesenchymal stem cells (MSCs) sense and
respond to this peculiar functionality: the -OSO3H. We have selected two natural GAGs for this
study: hyaluronic acid (HA) because it is the only non-sulfated glycan and heparin (HEP) as it is
the GAG with the highest degree of sulfation. To obtain a larger range of sulfation degrees, we
have also prepared a synthetic analogue of HA with a sulfation degree of 1.4 (sHA). All these
GAGs were covalently bonded to aminothiols deposited on gold surfaces. MSCs, both from
bone marrow and adipose tissue, adhered well to all surfaces. Formation of focal adhesions
was observed after only 1h of culture for bone marrow derived MSCs regardless the used
substrate. The presence of –OSO3H groups induced different morphology and cytoskeleton
organisation: formation of longer filopodia and well pronounced actin fibers were visible for
the MSCs from both sources. Moreover, cells were more spread after 24h in contact with –
OSO3H containing surfaces. Cells behaved similarly on both sulfated surfaces (sHA and HEP)
and differences in cell morphology were less obvious: higher sulfation degree induced less
lamellipodia formation while filopodia number and length increased.
In summary, the present study provides evidence that sulfation degree of GAGs triggers
distinct cytoskeleton organisation in mesenchymal stem cells that may be related with the
differentiation of those cells. However, further studies at the molecular level about the exact
mechanism of these processes need to be carried out
Recommended from our members
Age at antiretroviral therapy initiation and cell-associated HIV-1 DNA levels in HIV-1-infected children
Background
The latent viral reservoir is the major obstacle to achieving HIV remission and necessitates life-long antiretroviral therapy (ART) for HIV-infected individuals. Studies in adults and children have found that initiating ART soon after infection is associated with a reduction in the size of the HIV-1 reservoir. Here we quantified cell-associated HIV-1 DNA in early-treated but currently older HIV-infected children suppressed on ART.
Methods
The study participants comprised of a cohort of 146 early-treated children with HIV-1 RNA <50 copies/ml enrolled as part of a clinical trial in Johannesburg, South Africa. A stored buffy coat sample collected after a median 4.3 years on ART and where HIV-1 RNA was <50 copies/ml was tested for cell-associated HIV-1 DNA levels. An in-house, semi-nested real-time quantitative hydrolysis probe PCR assay to detect total HIV-1 subtype C proviral DNA was used. Children were followed prospectively for up to 3 years after this measurement to investigate subsequent HIV-1 RNA rebound/failure while remaining on ART. Age at ART initiation, HIV-1 RNA decline prior to HIV-1 DNA measurement and other factors were investigated.
Results
A gradient between age at ART initiation and later HIV-1 DNA levels was observed. When ART was started 50 copies/ml whilst on ART within 3 years after the DNA measurement was 2.07 (95% CI: 1.352–3.167) times greater if the HIV-1 DNA level was above the median of 55 copies/106 cells.
Conclusions
Cell-associated HIV-1 DNA levels measured after more than 4 years on ART were lower the younger the age of the child when ART was initiated. This marker of the size of the viral reservoir also predicted subsequent viral rebound/treatment failure while ART was sustained. The results provide additional evidence of the benefits of prompt diagnosis and early ART initiation in newborns and infants
230 Th normalization: new insights on an essential tool for quantifying sedimentary fluxes in the modern and quaternary ocean
© The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Costa, K. M., Hayes, C. T., Anderson, R. F., Pavia, F. J., Bausch, A., Deng, F., Dutay, J., Geibert, W., Heinze, C., Henderson, G., Hillaire-Marcel, C., Hoffmann, S., Jaccard, S. L., Jacobel, A. W., Kienast, S. S., Kipp, L., Lerner, P., Lippold, J., Lund, D., Marcantonio, F., McGee, D., McManus, J. F., Mekik, F., Middleton, J. L., Missiaen, L., Not, C., Pichat, S., Robinson, L. F., Rowland, G. H., Roy-Barman, M., Alessandro, Torfstein, A., Winckler, G., & Zhou, Y. 230 Th normalization: new insights on an essential tool for quantifying sedimentary fluxes in the modern and quaternary ocean. Paleoceanography and Paleoclimatology, 35(2), (2020): e2019PA003820, doi:10.1029/2019PA003820.230Th normalization is a valuable paleoceanographic tool for reconstructing high‐resolution sediment fluxes during the late Pleistocene (last ~500,000 years). As its application has expanded to ever more diverse marine environments, the nuances of 230Th systematics, with regard to particle type, particle size, lateral advective/diffusive redistribution, and other processes, have emerged. We synthesized over 1000 sedimentary records of 230Th from across the global ocean at two time slices, the late Holocene (0–5,000 years ago, or 0–5 ka) and the Last Glacial Maximum (18.5–23.5 ka), and investigated the spatial structure of 230Th‐normalized mass fluxes. On a global scale, sedimentary mass fluxes were significantly higher during the Last Glacial Maximum (1.79–2.17 g/cm2kyr, 95% confidence) relative to the Holocene (1.48–1.68 g/cm2kyr, 95% confidence). We then examined the potential confounding influences of boundary scavenging, nepheloid layers, hydrothermal scavenging, size‐dependent sediment fractionation, and carbonate dissolution on the efficacy of 230Th as a constant flux proxy. Anomalous 230Th behavior is sometimes observed proximal to hydrothermal ridges and in continental margins where high particle fluxes and steep continental slopes can lead to the combined effects of boundary scavenging and nepheloid interference. Notwithstanding these limitations, we found that 230Th normalization is a robust tool for determining sediment mass accumulation rates in the majority of pelagic marine settings (>1,000 m water depth).We thank Zanna Chase and one anonymous reviewer for valuable feedback. K. M. C. was supported by a Postdoctoral Scholarship at WHOI. L. M. acknowledges funding from the Australian Research Council grant DP180100048. The contribution of C. T. H., J. F. M., and R. F. A. were supported in part by the U.S. National Science Foundation (US‐NSF). G. H. R. was supported by the Natural Environment Research Council (grant NE/L002434/1). S. L. J. acknowledges support from the Swiss National Science Foundation (grants PP002P2_144811 and PP00P2_172915). This study was supported by the Past Global Changes (PAGES) project, which in turn received support from the Swiss Academy of Sciences and the US‐NSF. This work grew out of a 2018 workshop in Aix‐Marseille, France, funded by PAGES, GEOTRACES, SCOR, US‐NSF, Aix‐Marseille Université, and John Cantle Scientific. All data are publicly available as supporting information to this document and on the National Center for Environmental Information (NCEI) at https://www.ncdc.noaa.gov/paleo/study/28791
Evidence for Color Dichotomy in the Primordial Neptunian Trojan Population
In the current model of early Solar System evolution, the stable members of
the Jovian and Neptunian Trojan populations were captured into resonance from
the leftover reservoir of planetesimals during the outward migration of the
giant planets. As a result, both Jovian and Neptunian Trojans share a common
origin with the primordial disk population, whose other surviving members
constitute today's trans-Neptunian object (TNO) populations. The cold classical
TNOs are ultra-red, while the dynamically excited "hot" population of TNOs
contains a mixture of ultra-red and blue objects. In contrast, Jovian and
Neptunian Trojans are observed to be blue. While the absence of ultra-red
Jovian Trojans can be readily explained by the sublimation of volatile material
from their surfaces due to the high flux of solar radiation at 5AU, the lack of
ultra-red Neptunian Trojans presents both a puzzle and a challenge to formation
models. In this work we report the discovery by the Dark Energy Survey (DES) of
two new dynamically stable L4 Neptunian Trojans,2013 VX30 and 2014 UU240, both
with inclinations i >30 degrees, making them the highest-inclination known
stable Neptunian Trojans. We have measured the colors of these and three other
dynamically stable Neptunian Trojans previously observed by DES, and find that
2013 VX30 is ultra-red, the first such Neptunian Trojan in its class. As such,
2013 VX30 may be a "missing link" between the Trojan and TNO populations. Using
a simulation of the DES TNO detection efficiency, we find that there are 162
+/- 73 Trojans with Hr < 10 at the L4 Lagrange point of Neptune. Moreover, the
blue-to-red Neptunian Trojan population ratio should be higher than 17:1. Based
on this result, we discuss the possible origin of the ultra-red Neptunian
Trojan population and its implications for the formation history of Neptunian
Trojans
COVID-19 Vaccination of Individuals with Down Syndrome—Data from the Trisomy 21 Research Society Survey on Safety, Efficacy, and Factors Associated with the Decision to Be Vaccinated
Individuals with Down syndrome (DS) are among the groups with the highest risk for severe COVID-19. Better understanding of the efficacy and risks of COVID-19 vaccines for individuals with DS may help improve uptake of vaccination. The T21RS COVID-19 Initiative launched an international survey to obtain information on safety and efficacy of COVID-19 vaccines for individuals with DS. De-identified survey data collected between March and December 2021 were analyzed. Of 2172 individuals with DS, 1973 (91%) had received at least one vaccine dose (57% BNT162b2), 107 (5%) were unvaccinated by choice, and 92 (4%) were unvaccinated for other reasons. Most participants had either no side effects (54%) or mild ones such as pain at the injection site (29%), fatigue (12%), and fever (7%). Severe side effects occurred in <0.5% of participants. About 1% of the vaccinated individuals with DS contracted COVID-19 after vaccination, and all recovered. Individuals with DS who were unvaccinated by choice were more likely to be younger, previously recovered from COVID-19, and also unvaccinated against other recommended vaccines. COVID-19 vaccines have been shown to be safe for individuals with DS and effective in terms of resulting in minimal breakthrough infections and milder disease outcomes among fully vaccinated individuals with DS
Measurement of the Lifetime Difference Between B_s Mass Eigenstates
We present measurements of the lifetimes and polarization amplitudes for B_s
--> J/psi phi and B_d --> J/psi K*0 decays. Lifetimes of the heavy (H) and
light (L) mass eigenstates in the B_s system are separately measured for the
first time by determining the relative contributions of amplitudes with
definite CP as a function of the decay time. Using 203 +/- 15 B_s decays, we
obtain tau_L = (1.05 +{0.16}/-{0.13} +/- 0.02) ps and tau_H = (2.07
+{0.58}/-{0.46} +/- 0.03) ps. Expressed in terms of the difference DeltaGamma_s
and average Gamma_s, of the decay rates of the two eigenstates, the results are
DeltaGamma_s/Gamma_s = (65 +{25}/-{33} +/- 1)%, and DeltaGamma_s = (0.47
+{0.19}/-{0.24} +/- 0.01) inverse ps.Comment: 8 pages, 3 figures, 2 tables; as published in Physical Review Letters
on 16 March 2005; revisions are for length and typesetting only, no changes
in results or conclusion
COVID-19 Vaccination of Individuals with Down Syndrome—Data from the Trisomy 21 Research Society Survey on Safety, Efficacy, and Factors Associated with the Decision to Be Vaccinated
Individuals with Down syndrome (DS) are among the groups with the highest risk for
severe COVID-19. Better understanding of the efficacy and risks of COVID-19 vaccines for individuals
with DS may help improve uptake of vaccination. The T21RS COVID-19 Initiative launched an
international survey to obtain information on safety and efficacy of COVID-19 vaccines for individuals
with DS. De-identified survey data collected between March and December 2021 were analyzed.
Of 2172 individuals with DS, 1973 (91%) had received at least one vaccine dose (57% BNT162b2),
107 (5%) were unvaccinated by choice, and 92 (4%) were unvaccinated for other reasons. Most
participants had either no side effects (54%) or mild ones such as pain at the injection site (29%),
fatigue (12%), and fever (7%). Severe side effects occurred in <0.5% of participants. About 1% of the
vaccinated individuals with DS contracted COVID-19 after vaccination, and all recovered. Individuals
with DS who were unvaccinated by choice were more likely to be younger, previously recovered
from COVID-19, and also unvaccinated against other recommended vaccines. COVID-19 vaccines
have been shown to be safe for individuals with DS and effective in terms of resulting in minimal
breakthrough infections and milder disease outcomes among fully vaccinated individuals with DS
Key questions in marine mammal bioenergetics
This work was funded by the Marine Mammal Commission (MMC19-173). The Office of Naval Research funded the bioenergetic workshop (N000142012392) that provided support for this work.Bioenergetic approaches are increasingly used to understand how marine mammal populations could be affected by a changing and disturbed aquatic environment. There remain considerable gaps in our knowledge of marine mammal bioenergetics, which hinder the application of bioenergetic studies to inform policy decisions. We conducted a priority-setting exercise to identify high-priority unanswered questions in marine mammal bioenergetics, with an emphasis on questions relevant to conservation and management. Electronic communication and a virtual workshop were used to solicit and collate potential research questions from the marine mammal bioenergetic community. From a final list of 39 questions, 11 were identified as ‘key’ questions because they received votes from at least 50% of survey participants. Key questions included those related to energy intake (prey landscapes, exposure to human activities) and expenditure (field metabolic rate, exposure to human activities, lactation, time-activity budgets), energy allocation priorities, metrics of body condition and relationships with survival and reproductive success and extrapolation of data from one species to another. Existing tools to address key questions include labelled water, animal-borne sensors, mark-resight data from long-term research programs, environmental DNA and unmanned vehicles. Further validation of existing approaches and development of new methodologies are needed to comprehensively address some key questions, particularly for cetaceans. The identification of these key questions can provide a guiding framework to set research priorities, which ultimately may yield more accurate information to inform policies and better conserve marine mammal populations.Publisher PDFPeer reviewe
Prognostic significance of IDH-1 and MGMT in patients with glioblastoma: One step forward, and one step back?
A group of 160 patients with primary glioblastoma treated with radiotherapy and temozolomide was analyzed for the impact of O6-methly-guanly-methyl-transferase (MGMT)-promoter methylation as well as isocitrate dehydrogenase (IDH)1-mutational status. Unexpectedly, overall survival or progression-free survival were not longer in the group with methylated MGMT-promoter as compared to patients without that methylation. IDH-1 mutations were significantly associated with increased overall survival
The Eighth Data Release of the Sloan Digital Sky Survey: First Data from SDSS-III
The Sloan Digital Sky Survey (SDSS) started a new phase in August 2008, with
new instrumentation and new surveys focused on Galactic structure and chemical
evolution, measurements of the baryon oscillation feature in the clustering of
galaxies and the quasar Ly alpha forest, and a radial velocity search for
planets around ~8000 stars. This paper describes the first data release of
SDSS-III (and the eighth counting from the beginning of the SDSS). The release
includes five-band imaging of roughly 5200 deg^2 in the Southern Galactic Cap,
bringing the total footprint of the SDSS imaging to 14,555 deg^2, or over a
third of the Celestial Sphere. All the imaging data have been reprocessed with
an improved sky-subtraction algorithm and a final, self-consistent photometric
recalibration and flat-field determination. This release also includes all data
from the second phase of the Sloan Extension for Galactic Understanding and
Evolution (SEGUE-2), consisting of spectroscopy of approximately 118,000 stars
at both high and low Galactic latitudes. All the more than half a million
stellar spectra obtained with the SDSS spectrograph have been reprocessed
through an improved stellar parameters pipeline, which has better determination
of metallicity for high metallicity stars.Comment: Astrophysical Journal Supplements, in press (minor updates from
submitted version
- …