28 research outputs found

    PaCTS 1.0: A Crowdsourced Reporting Standard for Paleoclimate Data

    Get PDF
    The progress of science is tied to the standardization of measurements, instruments, and data. This is especially true in the Big Data age, where analyzing large data volumes critically hinges on the data being standardized. Accordingly, the lack of community-sanctioned data standards in paleoclimatology has largely precluded the benefits of Big Data advances in the field. Building upon recent efforts to standardize the format and terminology of paleoclimate data, this article describes the Paleoclimate Community reporTing Standard (PaCTS), a crowdsourced reporting standard for such data. PaCTS captures which information should be included when reporting paleoclimate data, with the goal of maximizing the reuse value of paleoclimate data sets, particularly for synthesis work and comparison to climate model simulations. Initiated by the LinkedEarth project, the process to elicit a reporting standard involved an international workshop in 2016, various forms of digital community engagement over the next few years, and grassroots working groups. Participants in this process identified important properties across paleoclimate archives, in addition to the reporting of uncertainties and chronologies; they also identified archive-specific properties and distinguished reporting standards for new versus legacy data sets. This work shows that at least 135 respondents overwhelmingly support a drastic increase in the amount of metadata accompanying paleoclimate data sets. Since such goals are at odds with present practices, we discuss a transparent path toward implementing or revising these recommendations in the near future, using both bottom-up and top-down approaches

    PaCTS 1.0: A Crowdsourced Reporting Standard for Paleoclimate Data

    Get PDF
    The progress of science is tied to the standardization of measurements, instruments, and data. This is especially true in the Big Data age, where analyzing large data volumes critically hinges on the data being standardized. Accordingly, the lack of community-sanctioned data standards in paleoclimatology has largely precluded the benefits of Big Data advances in the field. Building upon recent efforts to standardize the format and terminology of paleoclimate data, this article describes the Paleoclimate Community reporTing Standard (PaCTS), a crowdsourced reporting standard for such data. PaCTS captures which information should be included when reporting paleoclimate data, with the goal of maximizing the reuse value of paleoclimate data sets, particularly for synthesis work and comparison to climate model simulations. Initiated by the LinkedEarth project, the process to elicit a reporting standard involved an international workshop in 2016, various forms of digital community engagement over the next few years, and grassroots working groups. Participants in this process identified important properties across paleoclimate archives, in addition to the reporting of uncertainties and chronologies; they also identified archive-specific properties and distinguished reporting standards for new versus legacy data sets. This work shows that at least 135 respondents overwhelmingly support a drastic increase in the amount of metadata accompanying paleoclimate data sets. Since such goals are at odds with present practices, we discuss a transparent path toward implementing or revising these recommendations in the near future, using both bottom-up and top-down approaches

    The Iso2k Database: A global compilation of paleo-ÎŽ18O and ÎŽ2H records to aid understanding of Common Era climate

    Get PDF
    Reconstructions of global hydroclimate during the Common Era (CE; the past ~ 2000 years) are important for providing context for current and future global environmental change. Stable isotope ratios in water are quantitative indicators of hydroclimate on regional to global scales, and these signals are encoded in a wide range of natural geologic archives. Here we present the Iso2k database, a global compilation of previously published datasets from a variety of natural archives that record the stable oxygen (ή18O) or hydrogen (ή2H) isotopic composition of environmental waters, which reflect hydroclimate changes over the CE. The Iso2k database contains 756 isotope records from the terrestrial and marine realms, including: glacier and ground ice (205); speleothems (68); corals, sclerosponges, and mollusks (145); wood (81); lake sediments and other terrestrial sediments (e.g., loess) (158); and marine sediments (99). Individual datasets have temporal resolutions ranging from sub-annual to centennial, and include chronological data where available. A fundamental feature of the database is its comprehensive metadata, which will assist both experts and non-experts in the interpretation of each record and in data synthesis. Key metadata fields have standardized vocabularies to facilitate comparisons across diverse archives and with climate model simulated fields. This is the first global-scale collection of water isotope proxy records from multiple types of geological and biological archives. It is suitable for evaluating hydroclimate processes through time and space using large-scale synthesis, model-data intercomparison and (paleo)data assimilation. The Iso2k database is available for download at: https://doi.org/10.6084/m9.figshare.11553162 (McKay and Konecky, 2020)

    PaCTS 1.0: a crowdsourced reporting standard for paleoclimate data

    Get PDF
    The progress of science is tied to the standardization of measurements, instruments, and data. This is especially true in the Big Data age, where analyzing large data volumes critically hinges on the data being standardized. Accordingly, the lack of community-sanctioned data standards in paleoclimatology has largely precluded the benefits of Big Data advances in the field. Building upon recent efforts to standardize the format and terminology of paleoclimate data, this article describes the Paleoclimate Community reporTing Standard (PaCTS), a crowdsourced reporting standard for such data. PaCTS captures which information should be included when reporting paleoclimate data, with the goal of maximizing the reuse value of paleoclimate datasets, particularly for synthesis work and comparison to climate model simulations. Initiated by the LinkedEarth project, the process to elicit a reporting standard involved an international workshop in 2016, various forms of digital community engagement over the next few years, and grassroots working groups. Participants in this process identified important properties across paleoclimate archives, in addition to the reporting of uncertainties and chronologies; they also identified archive-specific properties and distinguished reporting standards for new vs. legacy datasets. This work shows that at least 135 respondents overwhelmingly support a drastic increase in the amount of metadata accompanying paleoclimate datasets. Since such goals are at odds with present practices, we discuss a transparent path towards implementing or revising these recommendations in the near future, using both bottom-up and top-down approaches

    Moving from contractor to owner operator: Impact on safety culture; a case study

    Get PDF
    Purpose – The purpose of this paper is to investigate whether a change in staffing contractual arrangements, specific training in hazard identification, mentoring of supervisors and the introduction of a robust safety system could improve an organisation\u27s safety culture. How safety conditions change under contracted out labour compared to direct labour and the influence that contracting out has on organisational safety culture is explored. Design/methodology/approach – The study used a case study methodology to detail how the change occurred over a six month period in 2011. As part of the analysis a model of the change process and push-pull factors is offered. Findings – As a result of the change, all areas saw some improvement. Work-related injury statistics dropped significantly, supervisors were clear of their roles, actively monitoring their crews to ensure they worked in a safer manner than before, and staff were actively addressing work-place hazards. With the safety system in place the organisation should be deemed compliant and diligent by the state auditing authorities. This study has also shown that using contractor workers together with in-house workers that are managed under different safety regimes is problematic. The problems don’t occur due to the contractor\u27s safety systems being less robust than the parent company\u27s or that contract workers are themselves less safe; it is the added complexity of managing multiple safety regimes and the lack of trust of the robustness of each system that create conflict. Research limitations/implications – The paper reports on the change process of one mining organisation in Western Australia as a case study from a managerial sample and is thereby limited. Practical implications – This study demonstrates the difficulties in changing safety culture in an underground mining organisation. The paper argues the need for specialised training in identifying hazards by the staff, the mentoring of supervisory staff and the adoption of a robust safety system to support improved safety culture. Originality/value – There is little research conducted in the resources sector researching changes in human resource supply and OHS management, in particular moving from contracted labour to hiring in-house. This case provides an insight into how a change in staffing hiring arrangements, together with specific safety initiatives, has a positive impact on safety performance

    Evaluating model outputs using integrated global speleothem records of climate change since the last glacial

    Get PDF
    Although quantitative isotope data from speleothems has been used to evaluate isotope-enabled model simulations, currently no consensus exists regarding the most appropriate methodology through which to achieve this. A number of modelling groups will be running isotope-enabled palaeoclimate simulations in the framework of the Coupled Model Intercomparison Project Phase 6, so it is timely to evaluate different approaches to using the speleothem data for data–model comparisons. Here, we illustrate this using 456 globally distributed speleothem ή18O records from an updated version of the Speleothem Isotopes Synthesis and Analysis (SISAL) database and palaeoclimate simulations generated using the ECHAM5-wiso isotope-enabled atmospheric circulation model. We show that the SISAL records reproduce the first-order spatial patterns of isotopic variability in the modern day, strongly supporting the application of this dataset for evaluating model-derived isotope variability into the past. However, the discontinuous nature of many speleothem records complicates the process of procuring large numbers of records if data–model comparisons are made using the traditional approach of comparing anomalies between a control period and a given palaeoclimate experiment. To circumvent this issue, we illustrate techniques through which the absolute isotope values during any time period could be used for model evaluation. Specifically, we show that speleothem isotope records allow an assessment of a model's ability to simulate spatial isotopic trends. Our analyses provide a protocol for using speleothem isotope data for model evaluation, including screening the observations to take into account the impact of speleothem mineralogy on ή18O values, the optimum period for the modern observational baseline and the selection of an appropriate time window for creating means of the isotope data for palaeo-time-slices

    The Iso2k database: a global compilation of paleo-ÎŽ18O and ÎŽ2H records to aid understanding of common era climate

    Get PDF
    Reconstructions of global hydroclimate during the Common Era (CE; the past ~2,000 years) are important for providing context for current and future global environmental change. Stable isotope ratios in water are quantitative indicators of hydroclimate on regional to global scales, and these signals are encoded in a wide range of natural geologic archives. Here we present the Iso2k database, a global compilation of previously published datasets from a variety of natural archives that record the stable oxygen (ÎŽ18O) or hydrogen (ÎŽÂČH) isotopic composition of environmental waters, which reflect hydroclimate changes over the CE. The Iso2k database contains 756 isotope records from the terrestrial and marine realms, including: glacier and ground ice (205); speleothems (68); corals, sclerosponges, and mollusks (145); wood (81); lake sediments and other terrestrial sediments (e.g., loess) (158); and marine sediments (99). Individual datasets have temporal resolutions ranging from sub-annual to centennial, and include chronological data where available. A fundamental feature of the database is its comprehensive metadata, which will assist both experts and non-experts in the interpretation of each record and in data synthesis. Key metadata fields have standardized vocabularies to facilitate comparisons across diverse archives and with climate model simulated fields. This is the first global-scale collection of water isotope proxy records from multiple types of geological and biological archives. It is suitable for evaluating hydroclimate processes through time and space using large-scale synthesis, model-data intercomparison and (paleo)data assimilation. The Iso2k database is available for download at: https://doi.org/10.25921/57j8-vs18 (Konecky and McKay, 2020) and is also accessible via through the NOAA/WDS Paleo Data landing page: https://www.ncdc.noaa.gov/paleo/study/29593

    Oxygen Isotopic Signatures of Major Climate Modes and Implications for Detectability in Speleothems

    No full text
    Natural and social systems worldwide are impacted by climate modes such as the El Niño/Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO) and Atlantic Multidecadal Oscillation (AMO), making it imperative to understand their sensitivity to climate change. Paleoclimate studies extend the observational climate baseline, and speleothem records (ÎŽ18Ospel) are a common data source. However, relationships between ÎŽ18Ospel and climate modes are uncertain; climate models provide a way to test the strength and stability of these relationships. Here, we use the isotope‐enabled Community Earth System Model’s Last Millennium Ensemble combined with a forward proxy model to delineate the global expression of modal variability in “pseudo‐stalagmite” (ÎŽ18Ospel) records worldwide. The modeled ÎŽ18Ospel spatially correlates with modal signatures. However, substantial changes in modal variance only modestly affect individual ÎŽ18Ospel variance. A network of ÎŽ18Ospel records, particularly one that straddles the Pacific, significantly improves the reconstructability of ENSO variance.Plain Language SummaryClimate variability on interannual‐decadal timescales often takes the form of coherent patterns (“modes”), such as the El Niño/Southern Oscillation (ENSO) phenomenon of the tropical Pacific. These patterns strongly impact global climate, and how they will change as the world warms remains uncertain. Although instrumental climate records are relatively short, paleoclimate records reveal past changes in these modes, allowing us to document their ranges of natural variability. A common approach is to use records of oxygen isotopic variations preserved in, for example, cave formations. To interpret these data, we must understand how climate modes impact the local isotopic content of precipitation and account for how paleoclimate data record this signal. Here, we use a climate model that includes isotope physics in the hydrologic cycle to show that although the oxygen isotope record in cave formations is influenced by different climate modes, the magnitude of the signal at any individual site appears relatively small. However, in the model, combining cave records from multiple regions can reconstruct past changes in the strength of ENSO. Multidecadal modes are more challenging to reconstruct from modeled cave records, perhaps reflecting model biases toward too‐weak multidecadal variability and too‐strong ENSO.Key PointsCoherent ÎŽ18O patterns are associated with the El Niño Southern Oscillation/Pacific Decadal Oscillation/Atlantic Multidecadal OscillationChanges in the strength of major climate modes lead to relatively small changes in the speleothem ÎŽ18O variability at individual sitesUsing a well‐distributed network of speleothem ÎŽ18O greatly increases the fidelity of modal variance reconstructionsPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/166262/1/grl61629_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/166262/2/grl61629.pd
    corecore