24 research outputs found

    Fast route to obtain Al2O3-based nanocomposites employing graphene oxide: Synthesis and Sintering

    Full text link
    A fast approach based on microwave technology was employed for the sintering of novel composites of alumina and using graphene oxide (GO) as susceptor. The thermal stability and structure of GO materials produced by chemical oxidation of graphite were characterized. The morphology, structure and mechanical properties of the composites sintered by microwave approach were reported to the counterparts sintered by conventional method. The results indicated the formation of an interconnecting graphene network promoted the electrical conductivity in the composite having only 2 wt.% GO. Hardness and elastic modulus decreased significantly in samples sintered by conventional method due to lower values of density while microwave technology allowed to achieve a positive effect on the densification and showed a smaller grain size when compared to the one achieved by conventional heating. (C) 2014 Elsevier Ltd. All rights reserved.Financial support from European Commission (project no. NMP3-SL-2010-246073), Universidad Politecnica de Valencia (project SP20120677) and Ministerio de Economia y Competitividad - MINECO (project TEC2012-37532-C02-01, co-funded by ERDF (European Regional Development Funds) is gratefully acknowledged. A.B. acknowledges the Spanish Ministry of Science and Innovation (contract JCI-2011-10498). A.P. acknowledges support from Romanian Authority for Scientific Research - UEFISCDI (project no. PN-II-RU-PD-2012-3-0124).Benavente Martínez, R.; Pruna, AI.; Borrell Tomás, MA.; Salvador Moya, MD.; Pullini, D.; Penaranda-Foix, FL.; Busquets Mataix, DJ. (2015). Fast route to obtain Al2O3-based nanocomposites employing graphene oxide: Synthesis and Sintering. Materials Research Bulletin. 64:245-251. https://doi.org/10.1016/j.materresbull.2014.12.075S2452516

    Toward Male Individualization with Rapidly Mutating Y-Chromosomal Short Tandem Repeats

    Get PDF
    Peer reviewe

    [Avian cytogenetics goes functional] Third report on chicken genes and chromosomes 2015

    Get PDF
    High-density gridded libraries of large-insert clones using bacterial artificial chromosome (BAC) and other vectors are essential tools for genetic and genomic research in chicken and other avian species... Taken together, these studies demonstrate that applications of large-insert clones and BAC libraries derived from birds are, and will continue to be, effective tools to aid high-throughput and state-of-the-art genomic efforts and the important biological insight that arises from them

    Effect of diet type and added copper on growth performance, carcass characteristics, energy digestibility, gut morphology, and mucosal mRNA expression of finishing pigs

    Get PDF
    A total of 757 pigs (PIC 337 × 1050, initially 60.8 lb) were used to determine the effects of added Cu (TBCC, tribasic copper chloride, IntelliBond C; Micronutrients, Inc., Indianapolis, IN) and diet type on growth performance, carcass characteristics, energy digestibility, gut morphology, and mucosal mRNA expression of finishing pigs. Pens of pigs were allotted to 1 of 4 dietary treatments, balanced on average pen weight in a randomized complete-block design with 26 to 28 pigs per pen and 7 replications per treatment. Treatments were arranged as a 2 × 2 factorial with main effects of diet type, a corn-soybean meal-based diet or a high by-product diet with 30% distillers dried grains with solubles (DDGS) and 15% bakery meal (by-product), and with or without added Cu (0 or 150 ppm added Cu). There were no Cu × diet type interactions for growth performance. Overall, neither added Cu nor diet type influenced growth performance. Pigs fed the by-product diet had decreased carcass yield (P = 0.007) and HCW F/G (P = 0.013), and tended to have decreased HCW (P = 0.067) and HCW ADG (P = 0.056) compared to pigs fed the corn-soybean meal-based diet. A Cu × diet type interaction (P < 0.05) existed for DM and GE digestibility during the early finishing period as added Cu improved digestibility of DM and GE in the corn-soybean mealbased diet, but not in the by-product diet. During the late finishing period, added Cu increased DM and GE digestibility (P = 0.060), while pigs fed the by-product diet had decreased DM and GE digestibility (P = 0.001). For gut morphology, pigs fed added Cu had decreased crypt depth (P = 0.017) in the distal small intestine. Relative mRNA expression of intestinal fatty acid binding protein (iFABP) was decreased (P = 0.032) in pigs fed added Cu. In summary, adding 150 ppm added Cu or including 30% DDGS and 15% bakery meal into a corn-soybean meal-based diet did not influence growth performance. However, HCW ADG and HCW G/F were reduced in pigs fed the by-product diet. Only minor differences in gut morphology or mRNA expression were observed from pigs fed diets with high levels of Cu or by-products compared to those fed a corn-soybean meal-based diet

    Effect of diet type and added copper on growth performance, carcass characteristics, energy digestibility, gut morphology, and mucosal mRNA expression of finishing pigs

    No full text
    A total of 757 pigs (PIC 337 × 1050; initially 27.6 kg BW) were used in a 117-d experiment to determine the effects of added Cu from tribasic copper chloride and diet type on growth performance, carcass characteristics, energy digestibility, gut morphology, and mucosal mRNA expression of finishing pigs. Pens of pigs were allotted to 1 of 4 dietary treatments, balanced on average pen weight in a randomized complete block design with 26 to 28 pigs per pen and 7 replications per treatment. Treatments were arranged in a 2 × 2 factorial with main effects of diet type, a corn-soybean meal-based diet (corn-soy) or a high by-product diet (by-product) with 30% distillers dried grains with solubles (DDGS) and 15% bakery meal, and added Cu (0 or 150 mg/kg added Cu). There were no Cu × diet type interactions for growth performance. Overall, neither added Cu nor diet type influenced growth performance. However, caloric efficiency was decreased (P = 0.001) for pigs fed the by-product diet compared to the corn-soy diet. Pigs fed the by-product diet had decreased (P < 0.05) carcass yield and carcass G:F) and marginally decreased (P < 0.07) HCW and carcass ADG compared to pigs fed the corn-soy diet. A Cu × diet type interaction (P < 0.05) existed for DM and GE digestibility during the early finishing period as added Cu improved (P < 0.05) digestibility of DM and GE in the corn-soy diet, but not in the by-product diet. During the late finishing period, added Cu marginally increased (P = 0.060) DM and GE digestibility while pigs fed the by-product diet had decreased DM and GE digestibility (P = 0.001) compared to those fed the corn-soy diet. For gut morphology, pigs fed added Cu had decreased crypt depth (P = 0.017) in the distal small intestine compared to those fed no added Cu. Furthermore, relative mRNA expression of intestinal fatty acid binding protein (iFABP) was decreased (P = 0.032) in pigs fed added Cu compared to those fed no added Cu. In summary, adding 150 mg/kg added Cu or including 30% DDGS and 15% bakery meal into a corn-soy diet did not influence growth performance. However, HCW ADG and HCW G:F were reduced in pigs fed the by-product diet compared to the corn-soy diet. Only minor differences in gut morphology or mRNA expression were observed from feeding diets with high levels of Cu or by-products compared to a corn-soy diet
    corecore