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It is now over 10 years since the first avian genome (ICGSC, 2004) and the first complete avian 

karyotype (Masabanda et al 2004) were both published, however, until 2014, avian cytogenetics 

has focused heavily on descriptive studies (e.g. Griffin et al 2007; 2008; Skinner et al 2009; 

Volker et al 2010) with less attention to its functional relevance. Last year however saw two 

landmark efforts in the chromosomal studies of birds: a special issue of Chromosome Research 

in April and the announcement of recently completed sequences of multiple new avian genomes 

in Science and the BMC journals (taking the total number sequenced to over 50) in December. 

Studying the chromosomes of birds is, perhaps for the first time, telling us more about avian 

biology, function and evolution than it ever has. 

 

What do we know so far?  Karyotypic stability 

The near-unique nature of the avian karyotype has remained a consistently reported feature of 

bird biology since the first chromosome preparations were made. Although many animal groups 

have microchromosomes, the small size and abundant number of chromosomes in avian species 

set birds apart genomically from other vertebrate groups. To the best of our knowledge, there 

are over 1000 published avian karyotypes, most comprehensively summarized by Christidis 

(1990), with several hundred added since this review. All of these karyotypes are partial 

however, with usually only 5-10 pairs of chromosomes easily distinguished, and the rest 

homogeneously classified. Moreover the vast majority of karyotypes hardly differ from each 

another, with rare exceptions including the stone curlew (Burhinus oedicnemus) (2n = 40), the 

beach thick knee (Esacus magnirostris) (2n = 40), several hornbills (2n = 42), kingfishers and 

hoopoes (Upupa epops) (2n > 120) at each end of the numerical spectrum (Christidis, 1990). 

Indeed, even since the advent of zoo-FISH, the identification of an interchromosomal 

rearrangement in a bird is a relatively uncommon event (Griffin et al., 2007).  

 

Central to our understanding of avian biology and evolution is establishing the reasons why avian 

karyotypes are evidently so stable. Clues to such an enquiry might lie in those rare exceptions to 

the rule.  For instance, the Falconiformes (falcons etc.) and Psittaciformes (parrots etc.) have 

noticeably undergone numerous evolutionary changes. Moreover it is noteworthy that when 

interchromosomal change occurs, it tends to recur. The best example of this is a fusion of the 

ancestral chromosomes 4 and 10; an event that appears to have occurred independently 

throughout evolution in chicken (Gallus gallus), greylag goose (Anser anser), collared dove 
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(Streptopelia decaocto) and probably other species also (Griffin et al., 2007). In this review, we 

examine some of the latest tools and preliminary solutions that are being used to understand 

the underlying mechanisms that lead to chromosome rearrangements in birds (and in 

eukaryotes in general).  

 

If we accept that interchromosomal change occurs only rarely in birds then it is reasonable to 

assume that this happens usually only when there is an adaptive value to doing so. In most 

species, phenotypic diversity is usually associated with wholesale changes in karyotype 

structure. Aves as a phylogenetic class underwent a series of rapid speciation events beginning 

c.65MYA (million years ago) and ending c.50MYA. Chromosomal change is usually a cause or 

consequence of speciation (i.e. a species barrier) but until recently, the microchromosomes that 

constitute the majority of the avian karyotype, have not been amenable to study. The latest 

studies however have paved the way for a flurry of research activity that not only describes the 

avian karyotype in more detail, but might also provide functional clues as to its nature.   

 

New molecular cytogenetic tools 

Lithgow et al (2014) produced a set of chromosome paints and bacterial artificial chromosomes 

(BACs) that will start the process of characterizing the microchromosomes and their changes 

over evolutionary time. They reported the development of chicken microchromosomal paint 

pools and generation of pairs of specific microchromosome BAC clones with some success in 

zoo-FISH experiments. For instance they detected a fusion of the ancestral chicken chromosome 

23 orthologue to a macrochromosomes in gyrfalcon (Falco rusticolus). McPherson et al. (2014) 

examined the Japanese quail (Coturnix japonica). Comparing chicken and turkey BAC clones on 

mitotic and meiotic chromosomes they demonstrated that high-resolution FISH is practicable. 

Ishishita et al. (2014) also assessed the distribution of centromeric repetitive sequences on both 

micro- and macrochromosomes. It is therefore now possible to achieve full, high-resolution 

characterization of all avian chromosomes in all species studied, including the elusive 

chromosome 16 and the D-group (smallest) chromosomes. There are several current strategies 

to fill the gaps; one of these is by the use of PacBio, a novel single-molecule real-time 

sequencing platform, targeting the sequence of smaller chromosomes using sorted chromosome 

preps, and assembling contigs into scaffolds and super-scaffolds from optical maps (Ganapathy 

et al., 2014). 
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Figure 1: FISH image of chicken chromosome BACs hybridized to peregrine falcon (Falco 

peregrinus) chromosomes.  A fusion is apparent.  

 

 

What have sequence assemblies taught us? 

The progress of genome assembly in birds has been slow in comparison to other animal groups 

such as mammals. Following chicken (ICGSC, 2004) it took a further 6 years until the second and 

third avian genome sequences were published, namely those of the zebra finch (Taeniopygia 

guttata a model for neurological function, especially learned vocalization) (Warren et al., 2010) 

and turkey (Meleagris gallopavo) (Dalloul et al., 2010). More recently, the Pekin duck (Anas 

platyrhynchos) (Huang et al., 2013) was added along with two falcon species (Falco peregrinus 

and Falco cherrug) (Zhan et al., 2013). The availability of these assembled genomes provided the 

opportunity for comparative genomics at a chromosomal level.  In 2010 we made the first 

comparison of two species using genome assembly information from the macrochromosomes 

(Völker et al., 2010). A similar comparison, more recently was made in chicken compared to duck 

(Rao et al., 2012) and then a three-way comparison (allowing studies of the direction of change) 

in chicken, turkey and zebra finch (Skinner and Griffin, 2012; Lithgow et al., 2014).  The principal 

features of chromosomal change in birds are Homologous Synteny Blocks (HSBs), which are 

demarked by Evolutionary Breakpoint Regions (EBRs). While analyzing these features some 
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general patterns have started to emerge. The first is that, although interchromosomal change is 

rare, intrachromosomal changes are commonplace. Breakpoint re-use is also commonplace, 

significantly more so than in mammals, and there is some evidence of an association between 

chromosomal breakage and non-allelic homologous recombination (NAHR) (Völker et al., 2010). 

 

Zhang et al. (2014) used a whole genome shotgun strategy to generate new whole genome 

sequences from 45 bird species representing many of the major clades and at least one 

representative from over 90% of all avian orders.  Around 20 species had a high (50-fold or 

greater coverage) and these were the subjects of further cytogenetic studies.  These included 

the common ostrich (Struthio camelus) and the budgerigar (Melopsittacus undulatus), which 

were further assembled using data from optical mapping experiments (Ganapathy et al., 2014). 

This had the effect of significantly increasing the assembly’s N50 scaffold sizes to around 15Mb 

and were subsequently used, with those already assembled by chromosome (chicken, turkey, 

zebra finch and duck). Romanov et al. (2014) made use of novel whole genome sequence 

information from 21 avian genome sequences available on an interactive browser (Evolution 

Highway). By focusing on the six best-assembled genomes (chicken, turkey, duck, zebra finch, 

ostrich budgerigar), a putative karyotype of the avian ancestor (probably a bipedal feathered 

dinosaur) was assembled for each chromosome. The evolutionary events were reconstructed 

that led to each of the six species’ genome organization. Intra- and inter- chromosomal changes 

appear best explained most parsimoniously by a series of inversions and translocations with 

common breakpoint reuse. Microchromosomes represent conserved blocks of synteny in most 

of the 21 species and a series of interchromosomal changes in the ostrich were also described 

that would not have been predicted by karyotype analysis alone. These results suggest that 

mechanisms exist to preserve a static overall avian karyotype/genomic structure, including the 

microchromosomes, with rare interchromosomal change (e.g. in ostrich and budgerigar lineages) 

this is discussed in depth in the next section. Of the species examined, it seemed that chicken 

had the least number of chromosomal rearrangements compared to the dinosaur ancestor. From 

Evolution Highway it is also possible to assess rates of chromosomal evolution in birds. Zhang et 

al. (2014) suggest that birds have a lower chromosomal rearrangement rate than mammals but 

nonetheless can undergo “bursts” of rearrangement, e.g. during the evolution of vocal learning. 

This finding corroborates those of Romanov et al. (2014) that identified the zebra finch and 

budgerigar as the two species with the most chromosomal rearrangements from the avian 
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ancestor. 

 

If we accept that chicken and its Galliform relatives underwent the least number of 

chromosomal changes whilst diverging from the ancestral bird, we also must consider whether 

they also have undergone the fewest phenotypic changes. In other words is the dinosaur avian 

ancestor more like a land fowl than any other bird? The most ancient near-certain fossil 

representative of modern birds (Neornithes) was almost certainly aquatic (for example, Vegavis, 

a genus of birds from the Late Cretaceous epoch) and has been identified as a Galloanseres. 

Indeed, the earliest known bird-like creatures in the fossil record (e.g. the Ornithurae Gansus) 

were either fully aquatic or at least amphibious and it has been suggested that, due to the fact 

that they had webbed feet (as well as other traits), they were more like ducks (Romanov et al 

2014). On the other hand, most authors agree that the dinosaur ancestors of birds were 

terrestrial, feathered, bipedal, relatively small and with limited flying ability - not unlike a 

chicken. At best we can determine therefore, the ancestral birds were most likely more 

phenotypically associated with the Galloanseres and the confusion of whether they were more 

akin to water- or land fowl may be due to interpretations based on depositional sampling biases, 

limited understanding of functional anatomy, and whether the individuals that have been 

discovered are actually fully representative of the groups to which they belonged. Chromosomal 

evidence provides an independent record of the functional material of inheritance in living birds 

and, as such, can complement a fossil record that is always likely to be incomplete.  

 

Of all species studied so far it seems clear that the rearrangement of chromosomes is non-

random (Pevzner and Tesler, 2003; Larkin et al., 2009). The reasons for this non-random nature 

warrant deeper investigation. According to mammalian evidence, evolutionarily conserved HSBs 

appear to evolve in different ways from the dynamic and ever-changing EBRs; whether this is 

true of birds remains to be seen. In mammals, chromosomal breakpoints are correlated to 

sequences of segmentally duplicated or repetitive DNA (Larkin et al., 2009; Bovine Genome 

Sequencing and Analysis Consortium et al., 2009; Groenen et al., 2012; Ruiz-Herrera et al., 2012) 

and species-specific EBRs are correlated with regions enriched for transposable elements (TEs) 

(Bovine Genome Sequencing and Analysis Consortium et al., 2009; Groenen et al., 2012). In 

mammals, EBRs and HSBs largely contain genes with notably different functional ontologies, e.g. 

organismal development in HSBs (Larkin et al., 2009) and lineage-specific biology and adaptive 
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features in EBRs (Larkin et al., 2009; Bovine Genome Sequencing and Analysis Consortium et al., 

2009; Groenen et al., 2012). It has been suggested therefore that chromosome rearrangements 

and the respective gene ontologies contained within HSBs and EBRs help to explain lineage-

specific phenotypes in mammals. Mammalian and avian genomes are very different however 

(not least because of the interchromosomal stability of avian genomes) and thus the question 

remains about whether the patterns that have been observed in mammals will apply to birds 

also. Birds have less repetitive DNA through the elimination of repetitive sequences 

(International Chicken Genome Sequencing Consortium, 2004; Shedlock, 2006; Zhang et al., 

2014) so that the avian genome is constrained by size, primarily because of gene loss as well as 

lineage specific erosion of repetitive elements and large segmental deletions. In addition to their 

karyotypic stability, bird genomes also have a very high degree of evolutionary stasis at 

nucleotide sequence and gene synteny levels. Nonetheless, one of the key findings was the 

detection of non-neutral evolutionary changes in functional genes as well as non-coding regions. 

Many of these changes coincide with adaptations to different lifestyles and niches and display 

homoplasy (Zhang et al., 2014). 

 

The non-random nature of chromosome rearrangement in birds, the reasons for the apparent 

interchromosomal (but not intrachromosomal) stability of avian karyotypes (see next section), 

the role of TEs (transposable elements) and NAHR, the relationship to phenotype, the question 

of whether spatial organization of ancestral gene networks is maintained in bird and other 

reptile lineages, the question of whether lineage-specific EBRs alter gene order in networks that 

had adaptive value, all require further investigation. Harnessing the data from over 50 avian 

genomes (undoubtedly with many more on the way) and employing tools such as Evolution 

Highway will give us unprecedented insight into avian chromosome evolution and its relationship 

to avian biology.  

 

Why is the avian karyotype structure conserved inter- but not intra- chromosomally? 

Burt’s “fission-fusion” hypothesis suggested that most avian microchromosomes became fixed in 

the common dinosaur ancestor with karyotype of ~2n = 60 including 20 microchromosome pairs 

(Burt 2002). The remainder, including the smallest was, is it suggested, created by further fission. 

Romanov et al (2014) suggested that a basic pattern of 2n = 80 (~30 microchromosome pairs) 

was fixed before the Palaeognathae-Neognathae divergence 100 MYA. The subsequent paucity 
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of intermicrochromosomal rearrangements between most Neognathae suggests an evolutionary 

advantage either to retaining this pattern or a lack of opportunity for change. For instance, an 

explanation for such evolutionary stasis might be that the underlying mutational mechanisms of 

chromosomal changes being fundamentally different in birds compared to other amniotes 

through a lack of adaptive value, rather than purifying selection, slowing down the rate of 

change. Much of this could be explained, in part, by a paucity of copy number variants (including 

segmental duplications), recombination hotspots, transposable elements and/or endogenous 

retroviruses, however this would not explain why interchromosomal change is rare but 

intrachromosomal change is common, particularly in groups that have undergone rapid 

speciation such as Passeriformes. 

 

The rate of chromosome rearrangement (and subsequent speciation) depends on: 1) the 

mutation rate and 2) the fixation rate (Burt et al. 1999). The first of these is related to the 

frequency of homologous sites (Burt, 2002). Repeat structures in general (e.g. CNVs), and 

transposable elements in particular, provide substrates for chromosomal rearrangement. In a 

genome constrained by size, the opportunity for mutation is reduced and only fission (or 

intrachromosomal change e.g. inversion) can occur. This provides an explanation why a) avian 

genomes are more fragmented than any other vertebrate (birds have the most chromosomes) 

and b) why there have been fewer interchromosomal rearrangements. There might also be 

advantages to retaining multiple chromosomes in a karyotype through the generation of 

variation, the driver of natural selection. That is, a karyotype with more chromosomes leads a 

greater number of genetic variants that the gametes produce and an increase in recombination 

rate due to the fact that there needs to be at least one obligatory chiasma per chromosome. 

Burt (2002) proposed that a higher recombination rate has also led to the features that we most 

associate with microchromosomes (high GC-content, low repeats, high gene-density etc.) and 

resulted in the formation and fixation of the archetypal avian karyotype with both macro- and 

microchromosomes and little interchromosomal rearrangement. Such as constraint however 

does not preclude rearrangement within the individual chromosomes. Romanov et al (2014) and 

King (1995) argue that an increase in intrachromosomal rearrangement correlates with bursts of 

speciation in birds, perhaps mediated by an increase in localized repeat content.  

 

Some birds nonetheless have a significantly different karyotype from the standard 2n = ~80. This 
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can occur within one closely related group e.g. Adélie penguin (Pygoscelis adeliae) (2n = 96) and 

the emperor penguin (Aptenodytes forsteri) (2n = 72) (but both associated with high degrees of 

intermicrochromosomal rearrangement) thereby suggesting that similar mechanisms can both 

reduce or increase chromosome number in relatively short time frames. Comparisons of 

chromosomal change in the zebra finch and the budgerigar suggest that rearrangement rates are 

similarly high in both groups to which they belong (Passeriformes and Psitacciformes 

respectively) but that the latter is capable of fixing interchromosomal rearrangements, while the 

former is not. The mechanisms underpinning these differences are, as yet, unknown but studies 

of the gene ontology terms of species specific EBRs might provide clues. As more avian genomes 

with better assemblies are analyzed, this may indicate adaptive phenotypic features associated 

with specific gene ontologies typical of individual orders, families or genera. 

 

The sex chromosomes 

Worthy of especial consideration is the conserved sex chromosome ZW system that is present in 

all birds apart from the Palaeognathae. Their independent origin from the XY system does not 

escape the fact that similar mechanisms appear to have run in parallel, for instance genes on the 

Z chromosome (like the mammalian X) have undergone selection for male-advantage functions. 

Like the Y chromosome, the W is small (albeit medium-sized by avian standards), 

heterochromatic and gene poor. Graves (2014) suggests that the W chromosome is at a more 

advanced stage of differentiation than the Y chromosome as it has accumulated more LINEs and 

lost more genes during its evolution. Pokorná et al (2014) considered multiple sex chromosomes 

and meiotic drive in a range of amniotes. This study noted that the single ZW system in birds 

contrasts with that of other reptile and amniote groups; they raised a very exciting hypothesis 

that this contrast may possibly be related to the differential involvement of sex-specific sex 

chromosomes in female meiosis (females being the heterogametic sex). Early in the assembly of 

the chicken genome, the quality of the build of both the Z and W sex chromosomes was very 

poor and limited studies existed on sex determination. Since this, the Z chromosome was 

painstakingly assembled and sequenced BAC by BAC (Bellott et al., 2010), and is now one of 

best-assembled chromosomes in the chicken genome. The same is now expected for the W sex 

chromosome, which currently is very poorly assembled (Chen et al., 2012). Zhou et al. (2014) 

conclude that the ancestral sex chromosome organization is closer to that of the Palaeognathae 

(ostrich and emu) and demonstrated that there is less degradation of the sex chromosomes and 
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a closer synteny with non-avian reptile species.  

 

Copy number variation 

Redon et al. (2006) first highlighted the impact of copy number variation (CNV) in the human 

genome. This seminal study heralded a new era in cytogenetics and has subsequently been 

applied to many other species and groups including birds. Skinner et al. (2014) provided a global 

overview of apparent cross-species CNVs in birds using cross-species array CGH. Griffin and Burt 

(2014) point out issues of definition in that “copy number variation,” strictly speaking, refers to 

polymorphisms within a species. The question arises therefore whether results of cross species 

array CGH represent genuine variation in copies of orthologous genes between species.  Skinner 

et al. (2014) stated that “difference in gene copy number between species is a question of gene 

duplication, segmental duplications etc. and may be driven by expansion and contraction of 

paralogs within different gene families.” Nonetheless, this paper provided a broad appraisal of 

apparent cross-species CNVs in 16 avian species. Microchromosomes appear to have more 

apparent CNVs than macrochromosomes. Indeed, in species with microchromosomal fusions 

such as Falconiformes, the fused “former microchromosomes” still retained their ancestral 

features such as a higher degree of cross-species CNVs. Skinner et al (2014) reported that about 

50% of the apparent cross-species CNVs overlap with known chicken-specific CNVs. In terms of 

gene ontology there appears to be a general enrichment in immune response and antigen 

presentation genes as well as 5 CNVRs perfectly correlated with the unique loss of sexual 

dichromatism. More specifically, there were also suggestions of CNVs involved in diet in turkey 

(proteolytic digestion/degradation of trypsin inhibitors), and correlation of the unique migratory 

behaviour of common quail among fowl through the following genes: OBSCN associated with 

hypertrophy of myofribrils, MAPK8IP3 implicated in respiratory gaseous exchange [Skinner et al., 

2014]. There were also suggestions of an association with muscle activity in falcons though the 

gain of MYOZ3, preferentially expressed in fast-twitch myofibers and skeletal muscle and an 

association between immune function in the common quail (Coturnix coturnix) and silver 

pheasant (Lophura nycthemera ) (LEAP2 and ITCH genes) as well as homeotic genes in common 

pheasant and California quail (SCML2 and DLX5).  Finally, Skinner et al. (2014) identified cross-

species CNVs associated with brain development and neuronal function in turkey (e.g. loss of 

CTXN1), common quail (gain of LRFN5) and duck (e.g., DLGAP2). 
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Conclusions  

The most recent advances in avian cytogenetics have culminated in great promise not only for 

the study of bird karyotypes, but also for providing insight into the mechanisms of chromosome 

evolution in general.  New avenues for investigation include gene regulation; for instance it will 

become necessary to map accurately the physical location of poly-adenylation and transcription 

start sites, important reference points that define promoters and post-transcriptional regulation. 

It will also become possible to sequence full-length transcripts, to allow accurate identification of 

alternate splicing events and their controlling elements. The “ENCODE” (Encyclopedia of DNA 

Elements) project has helped to define functional elements of the human genome, including 

those aforementioned as well as other chromatin signals, e.g. active chromatin, enhancers, 

insulators, methylation domains, etc. An effort of “agENCODE” is underway to include 

agriculturally important birds such as chicken, turkey, duck, quail and perhaps ostrich. The study 

of cytogenetics will be essential here in helping to define higher order structures in nuclear 

organization that show regulatory interactions within and between chromosomes. Finally 

reconstruction of evolutionary events allows us to study genome organization and function not 

only in extant but, by extrapolation, in extinct species also.  Reconstruction of avian-reptilian 

ancestral karyotypes will allow us to define chromosomal rearrangements in long-dead species 

that have captured the public imagination.  Here be dragons! 
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