66 research outputs found
The effect of CFTR modulators on structural lung disease in cystic fibrosis
Background: Newly developed quantitative chest computed tomography (CT) outcomes designed specifically to assess structural abnormalities related to cystic fibrosis (CF) lung disease are now available. CFTR modulators potentially can reduce some structural lung abnormalities. We aimed to investigate the effect of CFTR modulators on structural lung disease progression using different quantitative CT analysis methods specific for people with CF (PwCF). Methods: PwCF with a gating mutation (Ivacaftor) or two Phe508del alleles (lumacaftor-ivacaftor) provided clinical data and underwent chest CT scans. Chest CTs were performed before and after initiation of CFTR modulator treatment. Structural lung abnormalities on CT were assessed using the Perth Rotterdam Annotated Grid Morphometric Analysis for CF (PRAGMA-CF), airway-artery dimensions (AA), and CF-CT methods. Lung disease progression (0–3 years) in exposed and matched unexposed subjects was compared using analysis of covariance. To investigate the effect of treatment in early lung disease, subgroup analyses were performed on data of children and adolescents aged <18 years. Results: We included 16 modulator exposed PwCF and 25 unexposed PwCF. Median (range) age at the baseline visit was 12.55 (4.25–36.49) years and 8.34 (3.47–38.29) years, respectively. The change in PRAGMA-CF %Airway disease (-2.88 (−4.46, −1.30), p = 0.001) and %Bronchiectasis extent (-2.07 (−3.13, −1.02), p < 0.001) improved in exposed PwCF compared to unexposed. Subgroup analysis of paediatric data showed that only PRAGMA-CF %Bronchiectasis (-0.88 (−1.70, −0.07), p = 0.035) improved in exposed PwCF compared to unexposed. Conclusion: In this preliminary real-life retrospective study CFTR modulators improve several quantitative CT outcomes. A follow-up study with a large cohort and standardization of CT scanning is needed to confirm our findings.</p
Urine NMR-based TB metabolic fingerprinting for the diagnosis of TB in children
Tuberculosis (TB) is a major cause of morbidity and mortality in children, and early diagnosis and treatment are crucial to reduce long-term morbidity and mortality. In this study, we explore whether urine nuclear magnetic resonance (NMR)-based metabolomics could be used to identify differences in the metabolic response of children with different diagnostic certainty of TB. We included 62 children with signs and symptoms of TB and 55 apparently healthy children. Six of the children with presumptive TB had bacteriologically confirmed TB, 52 children with unconfirmed TB, and 4 children with unlikely TB. Urine metabolic fingerprints were identified using high- and low-field proton NMR platforms and assessed with pattern recognition techniques such as principal components analysis and partial least squares discriminant analysis. We observed differences in the metabolic fingerprint of children with bacteriologically confirmed and unconfirmed TB compared to children with unlikely TB (p = 0.041 and p = 0.013, respectively). Moreover, children with unconfirmed TB with X-rays compatible with TB showed differences in the metabolic fingerprint compared to children with non-pathological X-rays (p = 0.009). Differences in the metabolic fingerprint in children with different diagnostic certainty of TB could contribute to a more accurate characterisation of TB in the paediatric population. The use of metabolomics could be useful to improve the prediction of TB progression and diagnosis in children
First record of Helicotylenchus varicaudatus Yuen, 1964 (Nematoda: Hoplolaimidae) parasitizing Ammophila arenaria (L.) Link in Portuguese coastal sand dunes
A spiral nematode, Helicotylenchus varicaudatus Yuen, 1964, parasitizing Ammophila arenaria (L.) Link, the dominant grass in the Portuguese coastal sand dunes, is reported from Portugal for the first time and raises to seven the number of Helicotylenchus species detected in Portugal. A redescription of the species, with illustrations, and light and scanning electron microscope images of both female and male specimens, is presented. The rDNA containing the internal transcribed spacer regions (ITS) of H. varicaudatus was analysed with ITS-RFLP using the restriction endonuclease Hinf I. Molecular data from the ribosomal small subunit (SSU) (18S) confirmed the identification
Influenza vaccine effectiveness against influenza A subtypes in Europe: Results from the 2021-2022 I-MOVE primary care multicentre study
Background: In 2021-2022, influenza A viruses dominated in Europe. The I-MOVE primary care network conducted a multicentre test-negative study to measure influenza vaccine effectiveness (VE). Methods: Primary care practitioners collected information on patients presenting with acute respiratory infection. Cases were influenza A(H3N2) or A(H1N1)pdm09 RT-PCR positive, and controls were influenza virus negative. We calculated VE using logistic regression, adjusting for study site, age, sex, onset date, and presence of chronic conditions. Results: Between week 40 2021 and week 20 2022, we included over 11 000 patients of whom 253 and 1595 were positive for influenza A(H1N1)pdm09 and A(H3N2), respectively. Overall VE against influenza A(H1N1)pdm09 was 75% (95% CI: 43-89) and 81% (95% CI: 45-93) among those aged 15-64 years. Overall VE against influenza A(H3N2) was 29% (95% CI: 12-42) and 25% (95% CI: -41 to 61), 33% (95% CI: 14-49), and 26% (95% CI: -22 to 55) among those aged 0-14, 15-64, and over 65 years, respectively. The A(H3N2) VE among the influenza vaccination target group was 20% (95% CI: -6 to 39). All 53 sequenced A(H1N1)pdm09 viruses belonged to clade 6B.1A.5a.1. Among 410 sequenced influenza A(H3N2) viruses, all but eight belonged to clade 3C.2a1b.2a.2. Discussion: Despite antigenic mismatch between vaccine and circulating strains for influenza A(H3N2) and A(H1N1)pdm09, 2021-2022 VE estimates against circulating influenza A(H1N1)pdm09 were the highest within the I-MOVE network since the 2009 influenza pandemic. VE against A(H3N2) was lower than A(H1N1)pdm09, but at least one in five individuals vaccinated against influenza were protected against presentation to primary care with laboratory-confirmed influenza.This project has received funding from the European Centre for Disease Prevention and Control with in the framework contract ECDC/2018/029.S
Urine NMR-based TB metabolic fingerprinting for the diagnosis of TB in children
Tuberculosis (TB) is a major cause of morbidity and mortality in children, and early diagnosis and treatment are crucial to reduce long-term morbidity and mortality. In this study, we explore whether urine nuclear magnetic resonance (NMR)-based metabolomics could be used to identify differences in the metabolic response of children with different diagnostic certainty of TB. We included 62 children with signs and symptoms of TB and 55 apparently healthy children. Six of the children with presumptive TB had bacteriologically confirmed TB, 52 children with unconfirmed TB, and 4 children with unlikely TB. Urine metabolic fingerprints were identified using high- and low-field proton NMR platforms and assessed with pattern recognition techniques such as principal components analysis and partial least squares discriminant analysis. We observed differences in the metabolic fingerprint of children with bacteriologically confirmed and unconfirmed TB compared to children with unlikely TB (p = 0.041 and p = 0.013, respectively). Moreover, children with unconfirmed TB with X-rays compatible with TB showed differences in the metabolic fingerprint compared to children with non-pathological X-rays (p = 0.009). Differences in the metabolic fingerprint in children with different diagnostic certainty of TB could contribute to a more accurate characterisation of TB in the paediatric population. The use of metabolomics could be useful to improve the prediction of TB progression and diagnosis in children
Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis
BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London
Urine NMR-based TB metabolic fingerprinting for the diagnosis of TB in children
Tuberculosis (TB) is a major cause of morbidity and mortality in children, and early diagnosis and treatment are crucial to reduce long-term morbidity and mortality. In this study, we explore whether urine nuclear magnetic resonance (NMR)-based metabolomics could be used to identify differences in the metabolic response of children with different diagnostic certainty of TB. We included 62 children with signs and symptoms of TB and 55 apparently healthy children. Six of the children with presumptive TB had bacteriologically confirmed TB, 52 children with unconfirmed TB, and 4 children with unlikely TB. Urine metabolic fingerprints were identified using high- and low-field proton NMR platforms and assessed with pattern recognition techniques such as principal components analysis and partial least squares discriminant analysis. We observed differences in the metabolic fingerprint of children with bacteriologically confirmed and unconfirmed TB compared to children with unlikely TB (p = 0.041 and p = 0.013, respectively). Moreover, children with unconfirmed TB with X-rays compatible with TB showed differences in the metabolic fingerprint compared to children with non-pathological X-rays (p = 0.009). Differences in the metabolic fingerprint in children with different diagnostic certainty of TB could contribute to a more accurate characterisation of TB in the paediatric population. The use of metabolomics could be useful to improve the prediction of TB progression and diagnosis in children
multicentre analysis, I-MOVE-COVID-19 and ECDC networks, July to August 2021
Funding Information: This project received funding from the European Centre for Disease Prevention and Control (ECDC) under the contract ECD.11486. Funding Information: This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 101003673. Publisher Copyright: © 2022 European Centre for Disease Prevention and Control (ECDC). All rights reserved.Introduction: In July and August 2021, the SARS-CoV-2 Delta variant dominated in Europe. Aim: Using a multicentre test-negative study, we measured COVID-19 vaccine effectiveness (VE) against symptomatic infection. Methods: Individuals with COVID-19 or acute respiratory symptoms at primary care/community level in 10 European countries were tested for SARS-CoV-2. We measured complete primary course overall VE by vaccine brand and by time since vaccination. Results: Overall VE was 74% (95% CI: 69-79), 76% (95% CI: 71-80), 63% (95% CI: 48-75) and 63% (95% CI: 16-83) among those aged 30-44, 45-59, 60-74 and ≥ 75 years, respectively. VE among those aged 30-59 years was 78% (95% CI: 75-81), 66% (95% CI: 58-73), 91% (95% CI: 87-94) and 52% (95% CI: 40-61), for Comirnaty, Vaxzevria, Spikevax and COVID-19 Vaccine Janssen, respectively. VE among people 60 years and older was 67% (95% CI: 52-77), 65% (95% CI: 48-76) and 83% (95% CI: 64-92) for Comirnaty, Vaxzevria and Spikevax, respectively. Comirnaty VE among those aged 30-59 years was 87% (95% CI: 83-89) at 14-29 days and 65% (95% CI: 56-71%) at ≥ 90 days between vaccination and onset of symptoms. Conclusions: VE against symptomatic infection with the SARS-CoV-2 Delta variant varied among brands, ranging from 52% to 91%. While some waning of the vaccine effect may be present (sample size limited this analysis to only Comirnaty), protection was 65% at 90 days or more between vaccination and onset.publishersversionpublishe
Vaccine effectiveness against symptomatic SARS-CoV-2 infection in adults aged 65 years and older in primary care: I-MOVE-COVID-19 project, Europe, December 2020 to May 2021
I-MOVE-COVID-19 primary care study team (in addition to authors above): Nick Andrews, Jamie Lopez Bernal, Heather Whitaker, Caroline Guerrisi, Titouan Launay, Shirley Masse, Sylvie van der Werf, Vincent Enouf, John Cuddihy, Adele McKenna, Michael Joyce, Cillian de Gascun, Joanne Moran, Ana Miqueleiz, Ana Navascués, Camino Trobajo-Sanmartín, Carmen Ezpeleta, Paula López Moreno, Javier Gorricho, Eva Ardanaz, Fernando Baigorria, Aurelio Barricarte, Enrique de la Cruz, Nerea Egüés, Manuel García Cenoz, Marcela Guevara, Conchi Moreno-Iribas, Carmen Sayón, Verónica Gomez, Baltazar Nunes, Rita Roquete, Adriana Silva, Aryse Melo, Inês Costa, Nuno Verdasca, Patrícia Conde, Diogo FP Marques, Anna Molesworth, Leanne Quinn, Miranda Leyton, Selin Campbell, Janine Thoulass, Jim McMenamin, Ana Martínez Mateo, Luca Basile, Daniel Castrillejo, Carmen Quiñones Rubio, Concepción Delgado-Sanz, Jesús Oliva.The I-MOVE-COVID-19 network collates epidemiological and clinical information on patients with coronavirus disease (COVID-19), including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virological characterisation in 11 European countries [1]. One component of I-MOVE-COVID-19 is the multicentre vaccine effectiveness (VE) study at primary care/outpatient level in nine European study sites in eight countries. We measured overall and product-specific COVID-19 VE against symptomatic SARS-CoV-2 infection among those aged 65 years and older. We also measured VE by time since vaccination.This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 101003673.info:eu-repo/semantics/publishedVersio
- …