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Urine NMR‑based TB metabolic 
fingerprinting for the diagnosis 
of TB in children
Patricia Comella‑del‑Barrio1,2,12, José Luis Izquierdo‑Garcia2,3,4,12, Jacqueline Gautier5, 
Mariette Jean Coute Doresca5, Ramón Campos‑Olivas6, Clara M. Santiveri6, 
Beatriz Muriel‑Moreno1, Cristina Prat‑Aymerich1,2,7, Rosa Abellana8, 
Tomas M. Pérez‑Porcuna9, Luis E. Cuevas10, Jesús Ruiz‑Cabello2,3,4,11,13  
& José Domínguez1,2,13*

Tuberculosis (TB) is a major cause of morbidity and mortality in children, and early diagnosis and 
treatment are crucial to reduce long‑term morbidity and mortality. In this study, we explore whether 
urine nuclear magnetic resonance (NMR)‑based metabolomics could be used to identify differences 
in the metabolic response of children with different diagnostic certainty of TB. We included 62 
children with signs and symptoms of TB and 55 apparently healthy children. Six of the children with 
presumptive TB had bacteriologically confirmed TB, 52 children with unconfirmed TB, and 4 children 
with unlikely TB. Urine metabolic fingerprints were identified using high‑ and low‑field proton NMR 
platforms and assessed with pattern recognition techniques such as principal components analysis 
and partial least squares discriminant analysis. We observed differences in the metabolic fingerprint of 
children with bacteriologically confirmed and unconfirmed TB compared to children with unlikely TB 
(p = 0.041 and p = 0.013, respectively). Moreover, children with unconfirmed TB with X‑rays compatible 
with TB showed differences in the metabolic fingerprint compared to children with non‑pathological 
X‑rays (p = 0.009). Differences in the metabolic fingerprint in children with different diagnostic 
certainty of TB could contribute to a more accurate characterisation of TB in the paediatric population. 
The use of metabolomics could be useful to improve the prediction of TB progression and diagnosis in 
children.

One-quarter of the world’s population is infected with Mycobacterium tuberculosis, and 10 million people fell 
ill with tuberculosis (TB) in  20191. TB is also a major cause of morbidity and mortality in children, with an 
estimated one million dying from TB each  year1. Under-detection of childhood TB is common in low- and 
middle-income  countries2 as its clinical presentation overlaps with other respiratory infections, children have 
low sputum bacillary loads and are often unable to produce sputum, making its diagnosis  difficult3,4.

Metabolomics, or the systematic study of a unique chemical fingerprint present in a cellular system or bio-
fluid, increasingly allows discrimination between samples with different physiological or pathological  states5. 
These fingerprints can be measured in biological samples, such as urine, serum or plasma, using non-invasive 
methods such as nuclear magnetic resonance (NMR)  spectroscopy6, and have been used to monitor metabolic 
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changes over time induced by  pathogens7. Furthermore, the application of metabolomics to low-field (LF) NMR 
spectrometry has facilitated the development of smaller platforms suitable for primary and secondary medical 
centres  laboratories8,9. In recent years, metabolomics has facilitated gaining insights into TB  pathogenesis10, 
disease progression, and evaluation of treatment  responses11.

A few studies have focused on the discovery of urine-based biomarkers for TB diagnosis. Urine is a non-
invasive sample that requires minimal  preparation12 and would be an easily obtained clinical sample for diagnosis, 
especially for individuals unable to produce sputum, such as children. In this study, we aimed to describe a urine 
proton (1H) NMR-based metabolic fingerprint for the diagnosis of TB in children.

Results
One hundred and seventeen children were included, of which 62 had presumptive TB and 55 were apparently 
healthy (controls). Sixty-eight (58.1%) were male, and their mean (SD) age was 7 (3.6) years (Table 1). There were 
no sex or age differences between children with presumptive TB and controls. Eighty-one (69.2%) participants 
had received the Bacillus Calmette et Guérin (BCG) vaccine and had a BCG scar (Table 1). Among the 62 children 
with presumptive TB, 6 had bacteriologically confirmed TB, 52 unconfirmed TB (bacteriologically negative) 
and four were considered to be unlikely to have TB (unlikely TB), as described in Table 2. Eighteen (29%) of the 
62 children with presumptive TB had X-rays compatible with intrathoracic TB, nine (14.5%) had X-rays and 
clinical findings of extra-thoracic TB, and four (6.5%) had both intra- and extra-thoracic TB. Thirty-one (50%) 
children’s X-rays were considered inconclusive. Fifty-seven (91.9%) children had positive tuberculin skin test 
(TST, 54, 88.5%) and/or QuantiFERON-TB Gold In-Tube test (QFT-GIT, 39, 70.9%), with 63.2% (36/57) agree-
ment between the tests. Fifty-three (85.5%) had documented exposure to an index case of TB. Seven (11.3%) of 
the 62 children had five clinical criteria of TB, while 21 (33.9%) had four, 28 (45.2%) had three, and six (9.7%) 
had two clinical criteria.

Thirty-one (43.6%) of the 55 controls were male, and their mean (SD) age was 6.5 (2.9) years, as shown in 
Table 1.

Performance of the TB metabolic fingerprinting. The metabolic fingerprint of the urine samples 
(n = 117) were measured using both high-field (HF) and LF 1H NMR spectroscopy, as detailed in Fig. 1. Repre-
sentative spectra obtained with the HF and LF 1H NMRs are shown in Supplementary Fig. 1.

An unsupervised principal component analysis (PCA)13 was applied to the HF 1H NMR urine spectra of the 
six bacteriologically confirmed, 52 unconfirmed and four unlikely TB, and the 55 controls not showing clustering 
patterns between samples. Two children’s samples (one bacteriologically confirmed TB and one control) were 
considered outliers in the PCA score plot and were  excluded14 (Supplementary Fig. 2). A supervised partial least 
squares discriminant analysis (PLS-DA) was applied to identify a discriminatory metabolic pattern between 
presumptive TB and control groups to the remaining 115 urine samples. We observed groupings along the 
scores of the first component of the PLS-DA (PLS-DA component 1) (Fig. 2). The robustness parameters of the 
HF PLS-DA model were tested by Leave-One-Out Cross-Validation (LOOCV) using the PLS-DA component 
1 showing a performance accuracy to discriminate between presumptive TB and controls of 0.68, with R2 and 
Q2 values of 0.61 and 0.13, respectively; and an Area Under the Curve of Receiver Operating Characteristic 
(AUC-ROC) of 0.65. The Variable Importance in Projection (VIP) scores for the PLS-DA component 1 identified 
the main spectral regions of the metabolic fingerprint to differentiate between children with presumptive TB 
and controls (Supplementary Table 1). There was a trend in the PLS-DA component 1 scores with the certainty 
of TB diagnosis (Fig. 2). Thus, children with bacteriologically confirmed (n = 5) and unconfirmed TB (n = 52) 
had higher median PLS-DA component 1 scores (883.3 ± 751.1 and 913.3 ± 716.6) than children with unlikely 
TB (n = 4; − 385.2 ± 417.3) (p = 0.026 and p = 0.005, respectively; Fig. 3a). The PLS-DA component 1 scores also 
varied with the number of clinical criteria for TB. Children with five (n = 7), four (n = 21), and three (n = 27) 

Table 1.  Demographic and clinical characteristics of the study participants. Categorical variables expressed 
as number of subjects (n) and percentage (%), and quantitative variables expressed as median and standard 
deviation (SD). TB tuberculosis, BCG Bacillus Calmette-Guérin.

Variable All (n = 117) Presumptive TB (n = 62) Controls (n = 55) p-value

Gender 0.717

Girls 49 (41.9%) 25 (40.3%) 24 (43.6%)

Boys 68 (58.1%) 37 (59.7%) 31 (56.4%)

Age in years

Mean (SD) 6.89 (3.56) 7.28 (4.05) 6.45 (2.90) 0.203

Range 0.640

 ≤ 5 40 (34.2%) 20 (32.3%) 20 (36.4%)

 > 5 77 (65.8%) 42 (67.7%) 35 (63.6%)

BCG scar 0.259

Yes 81 (69.2%) 43 (69.4%) 38 (69.1%)

No 30 (25.6%) 14 (22.6%) 16 (29.1%)

Unknown 6 (5.1%) 5 (8.1%) 1 (1.8%)
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clinical criteria had significantly higher median PLS-DA component 1 scores (1262.4 ± 649.8, 1062.7 ± 839.3, 
and 736.3 ± 644.6, respectively) than children with two (n = 6) criteria (− 100.5 ± 582.7) (p = 0.014, p = 0.007, 
and p = 0.021, respectively; Fig. 3b). Children with unconfirmed TB with X-rays compatible with TB (n = 24) 
had higher PLS-DA component 1 scores than unconfirmed cases with normal X-rays (n = 28) (1080.8 ± 736.3 
and 796.2 ± 634.4) (p = 0.043).

If children who had already started treatment (for less than 15 days) are excluded from the analysis (4 con-
firmed TB, 19 unconfirmed TB and 1 unlikely TB), children with bacteriologically confirmed TB or unconfirmed 
TB still had significantly higher median PLS-DA component 1 scores (1333.4 ± 636.5 and 480.3 ± 508.5, respec-
tively) than children with unlikely TB (− 437.9 ± 125.1) (p = 0.005 and p = 0.010, respectively; Fig. 4).

The PCA applied to the 117 LF 1H NMR acquired urine fingerprints detected eight outliers (two bacteriologi-
cally confirmed TB, 4 unconfirmed TB and two controls), which were excluded from the PLS-DA (Supplementary 

Table 2.  Demographic information and clinical criteria of children with presumptive TB. a,b Significant 
differences in variables when comparing proportions between study groups. If a pair of values is significantly 
different, the values have the same superscript letters assigned to them. Bold values, significative statistical 
values with a p-value under 0.05. Categorical variables expressed as number of subjects (n) and percentage (%), 
and quantitative variables expressed as median and standard deviation (SD). TB tuberculosis, BCG Bacillus 
Calmette-Guérin.

Variable All (n = 62) Confirmed TB (n = 6) Unconfirmed TB (n = 52)
Unlikely TB 
(n = 4) p-value

Gender 0.742

Girls 25 (40.3%) 2 (33.3%) 22 (42.3%) 1 (25.0%)

Boys 37 (59.7%) 4 (66.7%) 30 (57.7%) 3 (75.0%)

Age in years

Mean (SD) 7.3 (4.1) 6.7 (3.9) 7.0 (4.0) 11.6 (3.3) 0.090

Range 0.250

 ≤ 5 20 (32.3%) 3 (50.0%) 17 (32.7%) 0 (0.0%)

 > 5 42 (67.7%) 3 (50.0%) 35 (67.3%) 4 (100.0%)

BCG scar 0.540

Yes 43 (69.4%) 4 (66.7%) 37 (71.2%) 2 (50.0%)

No 14 (22.6%) 2 (33.3%) 10 (19.2%) 2 (50.0%)

Unknown 5 (8.1%) 0 (0.0%) 5 (9.6%) 0 (0.0%)

TB type  < 0.001

Intrathoracic 18 (29.0%) 2 (33.3%) 16 (30.8%) 0 (0.0%)

Extrathoracic 9 (14.5%) 1 (16.7%) 8 (15.4%) 0 (0.0%)

Both 4 (6.5%) 3 (50.0%)a, b 1 (1.9%)a 0 (0.0%)b

Not defined 31 (50.0%) 0 (0.0%)a, b 27 (51.9%)a 4 (100.0%)b

Immunologic evidence of M. tuberculosis infection 0.619

Yes 57 (91.9%) 5 (83.3%) 48 (92.3%) 4 (100.0%)

No 5 (8.1%) 1 (16.7%) 4 (7.7%) 0 (0.0%)

TB exposure 0.001

Yes 53 (85.5%) 2 (33.3%)a, b 47 (90.4%)a 4 (100.0%)b

No 9 (14.5%) 4 (66.7%)a, b 5 (9.6%)a 0 (0.0%)b

Symptoms/signs suggestive of TB 0.006

 ≤ 2 32 (51.6%) 0 (0.0%)a, b 28 (53.8%)a 4 (100.0%)b

 ≥ 3 30 (48.4%) 6 (100.0%)a, b 24 (56.2%)a 0 (0.0%)b

Lymphadenopathy 0.092

Yes 22 (35.5%) 4 (66.7%) 18 (34.6%) 0 (0.0%)

No 40 (64.5%) 2 (33.3%) 34 (65.4%) 4 (100.0%)

Chest radiograph 0.006

Abnormal 30 (48.4%) 6 (100.0%)a, b 24 (46.2%)a 0 (0.0%)b

Normal 32 (51.6%) 0 (0.0%)a, b 28 (53.8%)a 4 (100.0%)b

Response to TB treatment  < 0.001

Treatment completed 52 (83.9%) 5 (83.3%)a 47 (90.4%)b 0 (0.0%)a, b

Lost to follow-up 8 (12.9%) 0 (0.0%)a 4 (7.7%)b 4 (100.0%)a, b

Died 2 (3.2%) 1 (16.7%) 1 (1.9%) 0 (0.0%)

Anti-TB treatment or preventive treatment 0.302

Under treatment 24 (38.7%) 4 (66.7%) 19 (36.5%) 1 (25.0%)

Untreated 38 (61.3%) 2 (33.3%) 33 (63.5%) 3 (75.0%)
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Fig. 3). A PLS-DA was applied to the remaining 109 urine fingerprints to identify a discriminatory metabolomic 
pattern between presumptive TB and control groups. We observed groupings between presumptive TB and 
control groups along the scores of the first component of the PLS-DA (PLS-DA component 1) (Fig. 5). PLS-DA 
component 1 scores were higher in children with presumptive TB than controls. The robustness parameters 
of the LF PLS-DA model were tested by LOOCV using the PLS-DA component 1 (performance accuracy to 
discriminate between presumptive TB and controls = 0.70, R2 = 0.76, Q2 = 0.08, and AUC-ROC = 0.65). Supple-
mentary Table 1 shows the VIP for PLS-DA component 1 responsible for differentiating between children with 
presumptive TB and controls. Children with bacteriologically confirmed TB (n = 5) had higher median PLS-DA 
component 1 scores (825.2 ± 1236.52) than children with unlikely TB (n = 3; − 316.5 ± 1464.3) (p = 0.040 Fig. 6a). 
The PLS-DA component 1 scores also varied with the number of clinical criteria for TB. Children with five (n = 6) 
clinical criteria had significantly higher median PLS-DA component 1 scores (1426.1 ± 1088.1) than children 
with two (n = 5) criteria (− 46.3 ± 1229.8) (p = 0.009; Fig. 6b). The median PLS-DA component 1 scores among 
children with unconfirmed TB with compatible TB X-rays (n = 23) and normal X-rays (n = 28) were similar 
(1518.7 ± 1136.3 and 1920.1 ± 1419.3) (p = 0.643).

Figure 1.  Description of the children who participated in the study according to the nuclear magnetic 
resonance equipment used to acquire the urine samples spectra and the classification of the patients in the study 
group. NMR nuclear magnetic resonance, HF high-field, LF low-field, TB tuberculosis.
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Figure 2.  Partial least squares discriminant analysis (PLS-DA) score plot of urine spectra measured using 
high-field proton (1H) nuclear magnetic resonance spectroscopy of children with presumptive TB (n = 61) and 
healthy children (n = 54). Two-dimensional view showing the distribution of the groups according to the first 
two components of the PLS-DA model. TB, tuberculosis. Metaboanalyst 5.0. (https:// www. metab oanal yst. ca).

Figure 3.  Association between partial least squares discriminant analysis (PLS-DA) scores and (a) study 
groups, and (b) the number of clinical criteria compatible with TB in 115 urine spectra acquired by high-field 
proton (1H) nuclear magnetic resonance. The central horizontal line within the boxes represents the median. 
The boxes comprise the first and third quartiles, the tiles indicate the maximum and minimum values, and the 
asterisk indicates statistically significant differences (p-value < 0.05) between groups. TB: tuberculosis; PLS-DA 
1, the first component of the PLS-DA model. IBM SPSS Statistics 26 (https:// www. ibm. com).

https://www.metaboanalyst.ca
https://www.ibm.com
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Figure 4.  Association between partial least squares discriminant analysis (PLS-DA) scores and study groups 
in 92 urine spectra of children without TB-treatment acquired by high-field proton (1H) nuclear magnetic 
resonance. The central horizontal line within the boxes represents the median. The boxes comprise the first 
and third quartiles, the tiles indicate the maximum and minimum values, and the asterisk indicates statistically 
significant differences (p-value < 0.05) between groups. TB tuberculosis; PLS-DA 1, the first component of the 
PLS-DA model. IBM SPSS Statistics 26 (https:// www. ibm. com).

Figure 5.  Partial least squares discriminant analysis (PLS-DA) score plot of urine spectra measured using 
low-field proton (1H) nuclear magnetic resonance spectroscopy of children with presumptive TB (n = 56) and 
healthy children (n = 53). Two-dimensional view showing the distribution of the groups according to the first 
two components of the PLS-DA model. TB, tuberculosis. Metaboanalyst 5.0. (https:// www. metab oanal yst. ca).

https://www.ibm.com
https://www.metaboanalyst.ca
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Discussion
Early diagnosis and treatment are crucial to stop the epidemic of childhood  TB2. The search for biomarkers in 
non-invasive biological samples as alternatives to sputum is needed to improve the diagnostic sensitivity of TB 
in this  population1,15. We report here a urine NMR-based metabolic fingerprint associated with bacteriologically 
and clinically diagnosed TB in  children16.

Recently, the detection of TB from Xpert MTB/RIF (Cepheid, Sunnyvale, CA, USA) in urine has been evalu-
ated in  children17; however, the results have not achieved the accuracy desired to improve TB diagnosis in this 
population. Other emerging alternative diagnostic include Fujifilm SILVAMP TB (FujiLAM, Fujifilm, Tokyo, 
Japan), a new assay generation for detecting lipoarabinomannan (LAM) in  urine18,19. In studies evaluating 
FujiLAM in children, the sensitivity and specificity reported were 50% and 92%, respectively, in a South African 
cohort, and 64.9% and 83.8%, respectively, in a multicentre evaluation in Africa 20,21. Despite its low sensitivity, 
its high specificity could help confirm the disease in children with a high probability of TB (e.g. children living 
in high-TB burden areas and those with HIV or malnutrition).

Biofluid metabolomics provides a snapshot of all the mechanisms that act during the disease, thus facilitat-
ing understanding the interaction between host and pathogen during infection and TB disease  progression22,23. 
Previously, metabolomic profiles have been described in  serum24–29 and  plasma24,25,30,31 by NMR spectroscopy 
and mass spectrometry for the prediction and detection of TB. In children, two studies have reported different 
metabolomic profiles for TB detection in  plasma32 and  serum33 analysed by 1H NMR spectroscopy. However, 
neither of these studies reported whether the metabolic profile could discriminate between children with dif-
ferent diagnostic certainty of  TB32. We have previously identified an NMR-based metabolomic profile in urine 
to diagnose TB in  adults34 and here we extend their potential application to the diagnosis of TB in a paediatric 
population and we have demonstrated differences in the urinary metabolic fingerprint of children with different 
certainty in the TB diagnosis.

TB in children is characterized by a continuum of conditions correlated with bacterial load, host immune 
responses, clinical manifestation, and the detection of M. tuberculosis3. Inflammatory host biomarkers in plasma 
have potential to discriminate latent TB infection from overt TB in children, and to identify the onset of TB 
disease 35–37. During latent infection, the host is able to contain the infection, the bacteria has restricted metabolic 
activity and there are no clinical manifestations. However, with progression to active TB, the infection overcomes 
the host immune system, the bacilli replicate, and the increased metabolomic activity of the mycobacteria modi-
fies the tissues physiopathology, with changes in the host metabolome. The metabolic fingerprinting analysed 
by HF 1H NMR spectroscopy showed metabolic differences between children with presumptive TB with two or 
fewer clinical criteria and three or more clinical criteria. Moreover, children with high diagnostic certainty of TB 
showed metabolic fingerprints similar to that of children with bacteriologically confirmed TB. This metabolic 
response could be attributed to the physiological stimuli that occurs during disease  progression23,38.

The paucibacillary nature of TB in children, combined with the limitation of current microbiological methods, 
results on a high dependence on chest X-rays for  diagnosis39. In this study, children with unconfirmed TB and 

Figure 6.  Association between partial least squares discriminant analysis (PLS-DA) scores and (a) study 
groups, and (b) the number of clinical criteria compatible with TB in 109 urine spectra acquired by low-field 
proton (1H) nuclear magnetic resonance. The central horizontal line within the boxes represents the median. 
The boxes comprise the first and third quartiles, the tiles indicate the maximum and minimum values, and the 
asterisk indicates statistically significant differences (p-value < 0.05) between groups. TB: tuberculosis; PLS-DA 
2, the second components of the PLS-DA model. IBM SPSS Statistics 26 (https:// www. ibm. com).

https://www.ibm.com


8

Vol:.(1234567890)

Scientific Reports |        (2021) 11:12006  | https://doi.org/10.1038/s41598-021-91545-0

www.nature.com/scientificreports/

abnormal X-rays had differences in their metabolic fingerprint compared with those with normal X-rays. The 
differences in the metabolic fingerprint are consistent with studies interpreting the occurrence of radiological 
features from the pathway of incipient TB infection to subclinical and symptomatic  TB40,41.

One limitation of this study is the low confirmation rate of TB (8% and 7% in HF and LF NMR metabolic 
fingerprint approach, respectively). This low rate, together with the inherent resonance overlap phenomenon in 
LF spectrometers (60 Hz)8,9 might have hindered the pattern recognition process in the LF metabolic fingerprint-
ing approach, losing its discriminatory power between the study sub-groups with presumptive TB. The compact 
and portable size and the successful performance of this approach, demonstrated in previous  studies8,9,34, makes 
LF benchtop NMR-based metabolic fingerprinting a promising diagnostic tool. However, further analysis with a 
larger group of children with confirmed TB is needed to evaluate the full potential of this approach in children as 
the small final number of bacteriologically confirmed TB cases (9.7%) in our study, prevented the development 
of a TB-specific discriminatory model.

In summary, this study identified an association between the urine NMR-based metabolic fingerprint and the 
clinical case definitions used for the classification of TB in children, and observed differences in the metabolic 
response of children with different diagnostic certainty of TB. This finding could contribute to the identification 
and classification of childhood TB, which would improve the characterization of the clinical spectrum of the 
disease and the search for new diagnostic and prognostic biomarkers of TB in children.

Methods
This was a prospective case series of children aged 0 to 14 years old with presumptive TB attending the St. Damien 
Paediatric Hospital, Port-au-Prince, Haiti, in 2015 and 2016, and healthy children attending a local primary 
school in the same neighbourhood.

Clinical and demographic information obtained at the time of enrolment included age, sex, weight, medical 
history and clinical presentation (history and exposure of TB, presence of cough, fever for ≥ 2 weeks, unexplained 
weight loss, and asthenia/fatigue, TB treatment, HIV status, and comorbidities), vaccines received (including 
BCG), and current and previous medications. Children with known immunodeficiencies, those receiving immu-
nosuppressive treatment, or those starting TB treatment more than 15 days ago were excluded. The Mantoux 
TST (Sanofi Pasteur, Canada) and the QFN-GIT (Qiagen, Germany) assays were performed and interpreted 
according to the manufacturer’s instructions.

All children with presumptive TB had a chest X-ray and induced or aspirated nasopharyngeal/nasogastric spu-
tum collected on three consecutive days. Sputum was examined using fluorescent smear microscopy (auramine 
stain). Children with positive smear microscopy or abnormal X-rays were tested with Xpert MTB/RIF. Children 
with lymph node adenopathy underwent biopsies, and specimens underwent histological examination from a 
pathologist.

Children with presumptive TB were classified, following the updated clinical case definitions for classifica-
tion of intrathoracic TB in children into confirmed, unconfirmed, and unlikely  TB16. Children were classified as: 
confirmed TB, if bacteriological confirmation was attained by Xpert MTB/RIF; unconfirmed TB, if there was not 
bacteriological confirmation, but evidence of M. tuberculosis infection (i.e., TST or QFT-GIT positive) and at least 
one clinical criteria of the clinical case definition (i.e., X-ray consistent with TB, symptoms and signs suggestive 
of TB, close TB exposure, or positive response on TB treatment), or two clinical criteria, if TST and QFT-GIT 
results were negative. Children were considered unlikely TB if the child had only evidence of M. tuberculosis 
infection or presented only one clinical criterion compatible with TB. School children were enrolled as controls 
if they had negative TST and QFT-GIT and no signs or symptoms of TB.

Urine collection. Midstream urine samples were collected from all participants in sterile plastic containers 
following standardized  procedures12. In children who attended the hospital, urine samples were collected within 
the first week of the TB diagnosis. Two millilitres of urine were aliquoted in cryovials with screw caps that were 
frozen at − 20 °C until the 1H NMR analysis. According to a protocol established in a previous  study34, 400 µl of 
urine were mixed with either 200 µl of the standard deuterated buffer for HF 1H NMR measurements or 250 µl 
for LF 1H NMR measurements. The standard deuterated buffer was a 0.2 M phosphate buffer solution dissolved 
in 99.9% deuterated water to adjust the internal pH to 7.4, containing 0.09% sodium azide and 0.3 mM tri-
methylsilyl propanoic acid (TMSP). Six hundred µl of buffered urine was transferred into 5 mm diameter NMR 
tubes (CortecNet, Les Ulis, France) for 1H NMR spectra acquisition.

Acquisition of NMR spectra. All 1H NMR urine spectra were measured following the procedures previ-
ously  described9,42 using two different instruments operating at HF and LF, respectively: (1) a Bruker Avance 
700 MHz spectrometer at a 1H frequency of 700 MHz (CNIO, Madrid, Spain) and (2) a Magritek Spinsolve 
60 Ultra benchtop NMR spectrometer at a 1H frequency of 60  MHz (Magritek GmbH, Aachen, Germany). 
Briefly, HF 1H NMR spectra were measured using a pulse sequence based on the first increment of the 
nuclear Overhauser effect spectroscopy (NOESY) with pre-saturation to effect suppression of the water signal 
(δ =  ~ 4.80 ppm). The spectra were acquired using the following parameters: 32,000 data points over a spectral 
width of 8,333.33 Hz and 256 scans resulting in acquisition times of 13 min per sample. LF 1H NMR spectra 
were measured using a one-dimensional presaturation (1D PRESAT) sequence to allow for efficient saturation of 
the water signal (δ =  ~ 4.95 ppm). The spectra were acquired using the following parameters: 64 scans, an acqui-
sition time of 6.4 s, and shimming of the sample after each new one to maintain a line width below 0.55 Hz. Data 
were zero-filled before Fourier transformation, and free induction decays (FIDs) were multiplied by exponential 
line broadening of 0.3 Hz.
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Processing spectral data. Spectral data were processed using the MestReNova program (v.14; Mestre-
lab Research, Santiago de Compostela, Spain). According to the established protocols described in previous 
 studies34,42, metabolite signals of the spectra were shift-aligned using TMSP as a reference signal standard 
(δ = 0.00 ppm), and the chemical shift regions of the raw HF 1H NMR spectra from 6.50 to 4.22 ppm were 
excluded from the analysis to remove the random effects of variation in urea and water resonance  suppression34,42. 
Then, the chemical shift region around 0.00 ppm containing the internal reference (TMSP) was excluded, and 
baseline correction was performed using the ‘Withakker Smoother’  algorithm34,42. Binning (also known as buck-
eting) was applied to 1H NMR spectra and data-reduced to equal length integral segments (bins) of 0.04 ppm to 
compensate variations in resonance positions. All bins were normalized by the total sum of the spectral regions 
(each bin was divided by the sum of all the 1H NMR signals) 34,42. Thus, the concentration of each metabolite was 
normalized by the urine total metabolite content to compare these concentrations (in arbitrary units) between 
 samples34,42. Before multivariate statistical analysis, spectral data were Pareto  scaled43, where the square root of 
the standard deviation is used as the scaling factor.

Multivariate analysis of spectral data. Processed 1H NMR data were analysed in a multivariate manner 
using the Metabonomic package of R software (rel.3.3.1)44,45 and MetaboAnalyst v.5.046. The analysis included 
all urine spectra acquired using the HF and LF 1H NMR equipment. Graphs were plotted using SPSS statistical 
software for windows (SPSS version 26; SPSS Inc, Chicago, IL, USA).

Unsupervised data were analysed by applying the PCA to reduce the dimensionality of NMR-processed data 
and to observe clustering patterns according to their elemental  composition13,14. In addition, PCA score plots 
were used to highlight statistical outliers based on Mahalanobis distance. Mahalanobis distance was calculated 
from the data point to the centroid of all samples in PC1, PC2, and PC3 three-dimensional space. A single case 
was considered a statistical outlier if it was placed out of the tolerance ellipse of 97.5%47.

Supervised PLS-DA13 was applied to the metabolic fingerprint of children with presumptive TB and con-
trols to detect a discriminatory metabolic pattern between groups. Thus, all spectral regions grouped in bins of 
0.04 ppm were transformed into a new set of orthogonal components obtained by maximising the covariance 
between spectral data and the class membership (presumptive TB and controls).

The robustness of the HF and LF PLS-DA models using the PLS-DA component 1 was validated using the 
LOOCV procedure (performance accuracy, R2, Q2, AUC-ROC). The VIP scores for PLS-DA were calculated 
to identify the spectral regions of the metabolic fingerprint most important for differentiating between children 
with presumptive TB and controls. Statistical significance was determined using Student’s t-test.

Since PLS-DA scores were trained to maximise the covariance between spectral data and class membership 
(presumptive TB vs controls), we hypothesised that the same PLS-DA scores should be sensitive also to differ-
ences within the group of children with presumptive TB (sub-categorised into bacteriologically confirmed TB, 
unconfirmed TB, and unlikely TB). Thus, the resulting PLS-DA component 1 (first latent variable) scores were 
used to evaluate metabolic differences between children with presumptive TB classified according to the stand-
ardized case definitions for TB and with the number of clinical criteria of TB.

Statistical analysis. Clinical and demographic characteristics were described using descriptive statistics. 
Categorical variables were described using frequencies and percentages, while continuous data were described 
using means and standard deviations (SD). Variables normally distributed were compared using parametric 
tests, including analysis of variance, and Student’ T-tests, and with non-parametric tests for comparisons of 
proportions. Comparison of PLS-DA scores among the children with presumptive TB groups and clinical crite-
ria score groups were performed using the Kruskal–Wallis test with Dunn’s post hoc comparisons. Differences 
were considered statistically significant when a p-value was < 0.05. Analyses were performed using the SPSS 26 
software package (SPSS, Chicago, USA).

Ethical statement. The study protocol was approved by the ethical review board of the Ethics Commit-
tee of the University of Barcelona and the Haiti National Ethics Committee (reference number IRB00003099). 
Written informed consent was obtained from the children’s parents or legal guardians before enrolment. Sample 
collection and all experiments were performed in accordance with relevant guidelines and regulations.
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