122 research outputs found

    Site-resolved imaging of a fermionic Mott insulator

    Full text link
    The complexity of quantum many-body systems originates from the interplay of strong interactions, quantum statistics, and the large number of quantum-mechanical degrees of freedom. Probing these systems on a microscopic level with single-site resolution offers important insights. Here we report site-resolved imaging of two-component fermionic Mott insulators, metals, and band insulators using ultracold atoms in a square lattice. For strong repulsive interactions we observe two-dimensional Mott insulators containing over 400 atoms. For intermediate interactions, we observe a coexistence of phases. From comparison to theory we find trap-averaged entropies per particle of 1.0kB1.0\,k_{\mathrm{B}}. In the band-insulator we find local entropies as low as 0.5kB0.5\,k_{\mathrm{B}}. Access to local observables will aid the understanding of fermionic many-body systems in regimes inaccessible by modern theoretical methods.Comment: 6+7 page

    Evaluating the climate impact of aviation emission scenarios towards the Paris agreement including COVID-19 effects

    Get PDF
    Aviation is an important contributor to the global economy, satisfying society’s mobility needs. It contributes to climate change through CO2 and non-CO2 effects, including contrail-cirrus and ozone formation. There is currently significant interest in policies, regulations and research aiming to reduce aviation’s climate impact. Here we model the effect of these measures on global warming and perform a bottom-up analysis of potential technical improvements, challenging the assumptions of the targets for the sector with a number of scenarios up to 2100. We show that although the emissions targets for aviation are in line with the overall goals of the Paris Agreement, there is a high likelihood that the climate impact of aviation will not meet these goals. Our assessment includes feasible technological advancements and the availability of sustainable aviation fuels. This conclusion is robust for several COVID-19 recovery scenarios, including changes in travel behaviour

    De novo design of protein logic gates

    Get PDF
    The design of modular protein logic for regulating protein function at the posttranscriptional level is a challenge for synthetic biology. Here, we describe the design of two-input AND, OR, NAND, NOR, XNOR, and NOT gates built from de novo–designed proteins. These gates regulate the association of arbitrary protein units ranging from split enzymes to transcriptional machinery in vitro, in yeast and in primary human T cells, where they control the expression of the TIM3 gene related to T cell exhaustion. Designed binding interaction cooperativity, confirmed by native mass spectrometry, makes the gates largely insensitive to stoichiometric imbalances in the inputs, and the modularity of the approach enables ready extension to three-input OR, AND, and disjunctive normal form gates. The modularity and cooperativity of the control elements, coupled with the ability to de novo design an essentially unlimited number of protein components, should enable the design of sophisticated posttranslational control logic over a wide range of biological functions

    Meta-analysis of genome-wide association studies from the CHARGE consortium identifies common variants associated with carotid intima media thickness and plaque

    Get PDF
    Carotid intima media thickness (cIMT) and plaque determined by ultrasonography are established measures of subclinical atherosclerosis that each predicts future cardiovascular disease events. We conducted a meta-analysis of genome-wide association data in 31,211 participants of European ancestry from nine large studies in the setting of the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium. We then sought additional evidence to support our findings among 11,273 individuals using data from seven additional studies. In the combined meta-analysis, we identified three genomic regions associated with common carotid intima media thickness and two different regions associated with the presence of carotid plaque (P < 5 × 10 -8). The associated SNPs mapped in or near genes related to cellular signaling, lipid metabolism and blood pressure homeostasis, and two of the regions were associated with coronary artery disease (P < 0.006) in the Coronary Artery Disease Genome-Wide Replication and Meta-Analysis (CARDIoGRAM) consortium. Our findings may provide new insight into pathways leading to subclinical atherosclerosis and subsequent cardiovascular events

    The genomes of two key bumblebee species with primitive eusocial organization

    Get PDF
    Background: The shift from solitary to social behavior is one of the major evolutionary transitions. Primitively eusocial bumblebees are uniquely placed to illuminate the evolution of highly eusocial insect societies. Bumblebees are also invaluable natural and agricultural pollinators, and there is widespread concern over recent population declines in some species. High-quality genomic data will inform key aspects of bumblebee biology, including susceptibility to implicated population viability threats. Results: We report the high quality draft genome sequences of Bombus terrestris and Bombus impatiens, two ecologically dominant bumblebees and widely utilized study species. Comparing these new genomes to those of the highly eusocial honeybee Apis mellifera and other Hymenoptera, we identify deeply conserved similarities, as well as novelties key to the biology of these organisms. Some honeybee genome features thought to underpin advanced eusociality are also present in bumblebees, indicating an earlier evolution in the bee lineage. Xenobiotic detoxification and immune genes are similarly depauperate in bumblebees and honeybees, and multiple categories of genes linked to social organization, including development and behavior, show high conservation. Key differences identified include a bias in bumblebee chemoreception towards gustation from olfaction, and striking differences in microRNAs, potentially responsible for gene regulation underlying social and other traits. Conclusions: These two bumblebee genomes provide a foundation for post-genomic research on these key pollinators and insect societies. Overall, gene repertoires suggest that the route to advanced eusociality in bees was mediated by many small changes in many genes and processes, and not by notable expansion or depauperation

    Occurrence of genes of putative fibrinogen binding proteins and hemolysins, as well as of their phenotypic correlates in isolates of S. lugdunensis of different origins

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Staphylococcus lugdunensis </it>is an important human pathogen that causes potentially fatal endocarditis, osteomyelitis and skin and soft tissue infections similar to diseases caused by <it>Staphylococcus aureus</it>. Nevertheless, in contrast to <it>S. aureus</it>, data on pathogenicity factors of <it>S. lugdunensis </it>is scarce. Two adhesins, a fibrinogen and a von Willebrand factor binding protein, and a <it>S. lugdunensis </it>synergistic hemolysin (SLUSH) have been previously described. Moreover, the newly sequenced genome of <it>S. lugdunensis </it>revealed genes of other putative fibrinogen binding adhesins and hemolysins. The aim of this study was to gain more insight into the occurrence of genes likely coding for fibrinogen binding adhesins and hemolysins using clinical strains of <it>S. lugdunensis</it>.</p> <p>Findings</p> <p>Most of the putative adhesin genes and hemolysin genes investigated in this study were highly prevalent, except for the SLUSH gene cluster. In contrast to previous reports, binding to fibrinogen was detected in 29.3% of the <it>S. lugdunensis </it>strains. In most strains, hemolysis on blood agar plates was weak after 24 h and distinct after 48 h of incubation. The fibrinogen binding and hemolysis phenotypes were also independent of the type of clinical specimen, from which the isolates were obtained.</p> <p>Conclusion</p> <p>In this study we described a pyrrolidonyl arylamidase negative <it>S. lugdunensis </it>isolate. Our data indicate that a matrix-assisted laser desorption ionisation time-of-flight MS-based identification of <it>S. lugdunensis </it>or species-specific PCR's should be performed in favour of pyrrolidonyl arylamidase testing. In contrast to the high occurrence of putative fibrinogen binding protein genes, 29.3% of the <it>S. lugdunensis </it>strains bound to fibrinogen. Putative hemolysin genes were also prevalent in most of the <it>S. lugdunensis </it>strains, irrespective of their hemolysis activity on Columbia blood agar plates. Similar to a previous report, hemolysis after 48 h of incubation is also indicative for <it>S. lugdunensis</it>. The SLUSH gene cluster was detected in an estimated 50% of the strains, indicating that this locus is different or non-prevalent in many strains.</p

    Computational Modeling of Silicate Glasses: A Quantitative Structure-Property Relationship Perspective

    Get PDF
    This article reviews the present state of Quantitative Structure-Property Relationships (QSPR) in glass design and gives an outlook into future developments. First an overview is given of the statistical methodology, with particular emphasis to the integration of QSPR with molecular dynamics simulations to derive informative structural descriptors. Then, the potentiality of this approach as a tool for interpretative and predictive purposes is highlighted by a number of recent inspiring applications

    Evolving concepts on the age-related changes in “muscle quality”

    Get PDF
    The deterioration of skeletal muscle with advancing age has long been anecdotally recognized and has been of scientific interest for more than 150 years. Over the past several decades, the scientific and medical communities have recognized that skeletal muscle dysfunction (e.g., muscle weakness, poor muscle coordination, etc.) is a debilitating and life-threatening condition in the elderly. For example, the age-associated loss of muscle strength is highly associated with both mortality and physical disability. It is well-accepted that voluntary muscle force production is not solely dependent upon muscle size, but rather results from a combination of neurologic and skeletal muscle factors, and that biologic properties of both of these systems are altered with aging. Accordingly, numerous scientists and clinicians have used the term “muscle quality” to describe the relationship between voluntary muscle strength and muscle size. In this review article, we discuss the age-associated changes in the neuromuscular system—starting at the level of the brain and proceeding down to the subcellular level of individual muscle fibers—that are potentially influential in the etiology of dynapenia (age-related loss of muscle strength and power)
    corecore