15 research outputs found
Regulatory Issues in Biosecurity
The management of biosecurity risks (risks to the production sector, to indigenous biodiversity, and to public health) involves the exercise of extensive regulatory powers both at the border and within New Zealand. This paper reviews the Biosecurity Act 1993, paying particular attention to its requirements for risk analysis and decision-making. These are generally of a high standard. Requirements at the border are significantly influenced by New Zealand’s trading obligations and opportunities. Requirements for domestic pest management strategies are elaborate but can be sidestepped. Cost recovery practices for biosecurity differ widely and have been controversial.biosecurity, pests, regulation, risk management, cost recovery
Tax Smoothing and Expenditure Creep
Tax smoothing minimises the economic costs of raising taxes to finance a varying profile of expenditure. This standard result assumes that expenditure pressures do not vary with the short term fiscal position. In the presence of expenditure creep, however, tax smoothing is no longer optimal tax policy.
The observed distribution of spectroscopic binaries from the Anglo-Australian Planet Search
This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society. © 2015 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society.We report the detection of sixteen binary systems from the Anglo-Australian Planet Search. Solutions to the radial velocity data indicate that the stars have companions orbiting with a wide range of masses, eccentricities and periods. Three of the systems potentially contain brown-dwarf companions while another two have eccentricities that place them in the extreme upper tail of the eccentricity distribution for binaries with periods less than 1000 d. For periods up to 12 years, the distribution of our stellar companion masses is fairly flat, mirroring that seen in other radial velocity surveys, and contrasts sharply with the current distribution of candidate planetary masses, which rises strongly below 10 MJ. When looking at a larger sample of binaries that have FGK star primaries as a function of the primary star metallicity, we find that the distribution maintains a binary fraction of ∼43 ± 4 per cent between −1.0 and +0.6 dex in metallicity. This is in stark contrast to the giant exoplanet distribution. This result is in good agreement with binary formation models that invoke fragmentation of a collapsing giant molecular cloud, suggesting that this is the dominant formation mechanism for close binaries and not fragmentation of the primary star's remnant protoplanetary disc.Peer reviewe
The EChO science case
The discovery of almost two thousand exoplanets has revealed an unexpectedly diverse planet population. We see gas giants in few-day orbits, whole multi-planet systems within the orbit of Mercury, and new populations of planets with masses between that of the Earth and Neptune—all unknown in the Solar System. Observations to date have shown that our Solar System is certainly not representative of the general population of planets in our Milky Way. The key science questions that urgently need addressing are therefore: What are exoplanets made of? Why are planets as they are? How do planetary systems work and what causes the exceptional diversity observed as compared to the Solar System? The EChO (Exoplanet Characterisation Observatory) space mission was conceived to take up the challenge to explain this diversity in terms of formation, evolution, internal structure and planet and atmospheric composition. This requires in-depth spectroscopic knowledge of the atmospheres of a large and well-defined planet sample for which precise physical, chemical and dynamical information can be obtained. In order to fulfil this ambitious scientific program, EChO was designed as a dedicated survey mission for transit and eclipse spectroscopy capable of observing a large, diverse and well-defined planet sample within its 4-year mission lifetime. The transit and eclipse spectroscopy method, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allows us to measure atmospheric signals from the planet at levels of at least 10−4 relative to the star. This can only be achieved in conjunction with a carefully designed stable payload and satellite platform. It is also necessary to provide broad instantaneous wavelength coverage to detect as many molecular species as possible, to probe the thermal structure of the planetary atmospheres and to correct for the contaminating effects of the stellar photosphere. This requires wavelength coverage of at least 0.55 to 11 μm with a goal of covering from 0.4 to 16 μm. Only modest spectral resolving power is needed, with R ~ 300 for wavelengths less than 5 μm and R ~ 30 for wavelengths greater than this. The transit spectroscopy technique means that no spatial resolution is required. A telescope collecting area of about 1 m2 is sufficiently large to achieve the necessary spectro-photometric precision: for the Phase A study a 1.13 m2 telescope, diffraction limited at 3 μm has been adopted. Placing the satellite at L2 provides a cold and stable thermal environment as well as a large field of regard to allow efficient time-critical observation of targets randomly distributed over the sky. EChO has been conceived to achieve a single goal: exoplanet spectroscopy. The spectral coverage and signal-to-noise to be achieved by EChO, thanks to its high stability and dedicated design, would be a game changer by allowing atmospheric composition to be measured with unparalleled exactness: at least a factor 10 more precise and a factor 10 to 1000 more accurate than current observations. This would enable the detection of molecular abundances three orders of magnitude lower than currently possible and a fourfold increase from the handful of molecules detected to date. Combining these data with estimates of planetary bulk compositions from accurate measurements of their radii and masses would allow degeneracies associated with planetary interior modelling to be broken, giving unique insight into the interior structure and elemental abundances of these alien worlds. EChO would allow scientists to study exoplanets both as a population and as individuals. The mission can target super-Earths, Neptune-like, and Jupiter-like planets, in the very hot to temperate zones (planet temperatures of 300–3000 K) of F to M-type host stars. The EChO core science would be delivered by a three-tier survey. The EChO Chemical Census: This is a broad survey of a few-hundred exoplanets, which allows us to explore the spectroscopic and chemical diversity of the exoplanet population as a whole. The EChO Origin: This is a deep survey of a subsample of tens of exoplanets for which significantly higher signal to noise and spectral resolution spectra can be obtained to explain the origin of the exoplanet diversity (such as formation mechanisms, chemical processes, atmospheric escape). The EChO Rosetta Stones: This is an ultra-high accuracy survey targeting a subsample of select exoplanets. These will be the bright “benchmark” cases for which a large number of measurements would be taken to explore temporal variations, and to obtain two and three dimensional spatial information on the atmospheric conditions through eclipse-mapping techniques. If EChO were launched today, the exoplanets currently observed are sufficient to provide a large and diverse sample. The Chemical Census survey would consist of > 160 exoplanets with a range of planetary sizes, temperatures, orbital parameters and stellar host properties. Additionally, over the next 10 years, several new ground- and space-based transit photometric surveys and missions will come on-line (e.g. NGTS, CHEOPS, TESS, PLATO), which will specifically focus on finding bright, nearby systems. The current rapid rate of discovery would allow the target list to be further optimised in the years prior to EChO’s launch and enable the atmospheric characterisation of hundreds of planets
Regulatory Issues in Biosecurity
The management of biosecurity risks (risks to the production sector, to indigenous biodiversity, and to public health) involves the exercise of extensive regulatory powers both at the border and within New Zealand. This paper reviews the Biosecurity Act 1993, paying particular attention to its requirements for risk analysis and decision-making. These are generally of a high standard. Requirements at the border are significantly influenced by New Zealand's trading obligations and opportunities. Requirements for domestic pest management strategies are elaborate but can be sidestepped. Cost recovery practices for biosecurity differ widely and have been controversial
Tax Smoothing and Expenditure Creep
Tax smoothing minimises the economic costs of raising taxes to finance a varying profile of expenditure. This standard result assumes that expenditure pressures do not vary with the short term fiscal position. In the presence of expenditure creep, however, tax smoothing is no longer optimal tax policy
An inhibitor of oil body mobilization in Arabidopsis
Fatty acid β-oxidation is an essential process in many aspects of plant development, and storage oil in the form of triacylglycerol (TAG) is an important food source for humans and animals, for biofuel and for industrial feedstocks. In this study we characterize the effects of a small molecule, diphenyl methylphosphonate, on oil mobilization in Arabidopsis thaliana. Confocal laser scanning microscopy, transmission electron microscopy and quantitative lipid profiling were used to examine the effects of diphenyl methylphosphonate treatment on seedlings. Diphenyl methylphosphonate causes peroxisome clustering around oil bodies but does not affect morphology of other cellular organelles. We show that this molecule blocks the breakdown of pre-existing oil bodies resulting in retention of TAG and accumulation of acyl CoAs. The biochemical and phenotypic effects are consistent with a block in the early part of the β-oxidation pathway. Diphenyl methylphosphonate appears to be a fairly specific inhibitor of TAG mobilization in plants and whilst further work is required to identify the molecular target of the compound it should prove a useful tool to interrogate and manipulate these pathways in a controlled and reproducible manner
