229 research outputs found

    Central Role of Glucocorticoid Receptors in Alzheimer’s Disease and Depression

    Get PDF
    Alzheimer’s disease (AD) is the principal neurodegenerative pathology in the world displaying negative impacts on both the health and social ability of patients and inducing considerable economic costs. In the case of sporadic forms of AD (more than 95% of patients), even if mechanisms are unknown, some risk factors were identified. The principal risk is aging, but there is growing evidence that lifetime events like chronic stress or stress-related disorders may increase the probability to develop AD. This mini-review reinforces the rationale to consider major depressive disorder (MDD) as an important risk factor to develop AD and points the central role played by the hypothalamic-pituitary-adrenal (HPA) axis, glucocorticoids (GC) and their receptors (GR) in the etiology of MDD and AD. Several strategies directly targeting GR were tested to neutralize the HPA axis dysregulation and GC overproduction. Given the ubiquitous expression of GR, antagonists have many undesired side effects, limiting their therapeutic potential. However, a new class of molecules was developed, highly selective and acting as modulators. They present the advantage to selectively abrogate pathogenic GR-dependent processes, while retaining beneficial aspects of GR signaling. In fact, these “selective GR modulators” induce a receptor conformation that allows activation of only a subset of downstream signaling pathways, explaining their capacity to combine agonistic and antagonistic properties. Thus, targeting GR with selective modulators, alone or in association with current strategies, becomes particularly attractive and relevant to develop novel preventive and/or therapeutic strategies to tackle disorders associated with a dysregulation of the HPA axis

    The Role of Donor Selection for a Second Allogeneic Stem Cell Transplantation in Patients with AML Relapsing after a First Transplant; A Study on Behalf of the Acute Leukemia Working Party of EBMT

    Get PDF
    Abstract Introduction. Recurrent disease is the major cause of treatment failure after allogeneic stem cell transplantation (SCT) in patients with AML. Second SCT (SCT2) is a valid treatment option in this setting but outcome is relatively poor. Haplo-identical (haplo) SCT is increasingly used over the last decade due to the introduction of non T-depleted methods. Prior studies have shown similar outcome when using the same or different HLA-matched donor for SCT2. However, there is relatively limited data on the use of haplo-donors. Methods and Results. The study included 556 patients with AML relapsing after a first allogeneic SCT (SCT1) given in CR1 from an HLA-matched sibling (sib, n= 294) or a matched unrelated donor (MUD, n=262) and given SCT2 during the years 2006-2016. The median age at SCT2 was 46 years (20-73). 247 patients were in CR2 (44%) and 309 had active leukemia (55%) at the time of SCT2. The conditioning regimen was myeloablative (MAC, 66%) or reduced-intensity (RIC, 34%) for SCT1, and 41% and 59%, respectively for SCT2. 19% of all patients had acute GVHD grade II-IV and 20% had chronic GVHD after SCT1 and before relapse. Patients were divided into 3 groups based on the donor selected for SCT2; 1) same donor (n=163, sib/sib-112, MUD/MUD-51), 2) different HLA-matched donor (n=305, sib/different sib-44, sib/MUD-93, MUD/ different MUD- 168), 3) haplo-donor (n=88, sib/haplo-45, MUD/haplo-43). All haploSCT were non T-depleted. There were some differences between the 3 groups in the timing of relapse and SCT2. The median time from SCT1 to relapse was similar; 10.6, 12.5 and 9.3 months, respectively (P=0.14). However, the median time from relapse to SCT2 was shorter for the same donor group; 2.8, 3.7 and 3.5 months, respectively (P<0.001) and the median time between SCT1 and SCT2 was longer for the different donor group; 14.3, 17.5 and 13.8 months, respectively (P=0.03). There were no difference between the groups in patient age, gender, disease status at SCT2 or conditioning regimen intensity for SCT1 or SCT2. The 2-year leukemia-free survival (LFS) after SCT2 was 23.5%, 23.7% and 21.8%, respectively (unadjusted P=0.30). Multivariate analysis of factors predicting relapse after SCT2 showed no effect of the second donor type, hazard ratio (HR) 0.96 (P=0.83) and 1.20 (P=0.47) for different matched donor and haplo-donor compared to the same donor, respectively. MUD donor in SCT1, CR2 compared to active disease and chronic GVHD after SCT1 were associated with reduced relapse risk after SCT2, HR 0.70 (P=0.02), 0.60 (P=0.001) and 0.66 (P=0.03), respectively. Age, gender, conditioning regimen used for SCT1 or SCT2 and time to first relapse or to SCT2 did not predict relapse rate after SCT2. The second donor type did predict for non-relapse mortality (NRM) after SCT2; HR 1.26 (P=0.41) and 2.18 (P=0.02) for different matched donor and haplo-donor compared to same donor, respectively. Advanced age and MAC in SCT1 also predicted for NRM, HR 1.40 (P<0.001) and 0.61 (P=0.04), respectively. The second donor also predicted for LFS after SCT2; HR 1.05 (P=0.77) and 1.55 (P=0.03), respectively. Advanced age and SCT2 in CR2 also predicted for LFS; HR 1.11 (P=0.06) and 0.66 (P=0.002), respectively. In all, there were no differences between same or different matched donors in SCT2 outcomes, but haploSCT2 was associated with higher NRM and lower LFS. Significant interaction was detected between second donor type and conditioning for SCT1. The inferior outcome after SCT2 with a haplo-donor was limited to patients given MAC in SCT1. In this setting it was associated with higher relapse and NRM rates and lower LFS, HR 1.86 (P=0.05), 3.40 (P=0.005) and 2.25 (P=0.001), respectively. However, there was no difference in any of these outcomes in patients given RIC in SCT1. Unadjusted analysis showed that in patients with no chronic GVHD after SCT1, haploSCT2 was associated with lower LFS, due to higher NRM. However, LFS was similar in patients with prior chronic GVHD. Multivariate analysis was not feasible due to low patient numbers. Conclusions. Second SCT with the same donor or different matched donor is associated with similar outcomes in patients with relapsed AML after a first SCT. However, SCT2 with a haplo-donor is associated with higher NRM and lower LFS, mostly in patients given MAC in SCT1. Prior chronic GVHD after SCT1 is associated with lower relapse rate after SCT2. The role of prior chronic GVHD in donor selection should be further investigated. Disclosures Finke: Medac: Consultancy, Honoraria, Other: travel grants, Research Funding; Neovii: Consultancy, Honoraria, Other: travel grants, Research Funding; Novartis: Consultancy, Honoraria, Other: travel grants, Research Funding; Riemser: Consultancy, Honoraria, Research Funding. Gramatzki:Affimed: Research Funding. Stelljes:Novartis: Honoraria; Amgen: Honoraria; JAZZ: Honoraria; MSD: Consultancy; Pfizer: Consultancy, Honoraria, Research Funding. Stoelzel:Neovii: Speakers Bureau. Mohty:MaaT Pharma: Consultancy, Honoraria

    Allogeneic stem cell transplantation benefits for patients >= 60 years with acute myeloid leukemia and FLT3 internal tandem duplication : a study from the Acute Leukemia Working Party of the European Society for Blood and Marrow Transplantation

    Get PDF
    Intermediate-risk cytogenetic acute myeloid leukemia with an internal tandem duplication of FLT3 (FLT3-ITD) is associated with a high risk of relapse, and is now a standard indication for allogeneic stem cell transplantation. Nevertheless, most studies supporting this strategy have been performed in young patients. To address the benefit of allogeneic transplantation in the elderly, we made a selection from the European Society for Blood and Marrow Transplantation registry of de novo intermediate-risk cytogenetic acute myeloid leukemia harboring FLT3-ITD in patients aged 60 or over and transplanted from a related or unrelated donor between January 2000 and December 2015. Two hundred and ninety-one patients were identified. Most patients received a reduced-intensity conditioning (82%), while donors consisted of an unrelated donor in 161 (55%) patients. Two hundred and twelve patients received their transplantation in first remission, 37 in second remission and 42 in a more advanced stage of the disease. The 2-year leukemia-free survival rate was 56% in patients in first remission, 22% in those in second remission and 10% in patients with active disease, respectively (P= 60 with FLT3-ITD acute myeloid leukemia in first remission, similarly to current treatment recommendations for younger patients.Peer reviewe

    Adult Low-Hypodiploid Acute Lymphoblastic Leukemia Emerges from Preleukemic TP53-Mutant Clonal Hematopoiesis

    Get PDF
    UNLABELLED Low hypodiploidy defines a rare subtype of B-cell acute lymphoblastic leukemia (B-ALL) with a dismal outcome. To investigate the genomic basis of low-hypodiploid ALL (LH-ALL) in adults, we analyzed copy-number aberrations, loss of heterozygosity, mutations, and cytogenetics data in a prospective cohort of Philadelphia (Ph)-negative B-ALL patients (n = 591, ages 18-84 years), allowing us to identify 80 LH-ALL cases (14%). Genomic analysis was critical for evidencing low hypodiploidy in many cases missed by cytogenetics. The proportion of LH-ALL within Ph-negative B-ALL dramatically increased with age, from 3% in the youngest patients (under 40 years old) to 32% in the oldest (over 55 years old). Somatic TP53 biallelic inactivation was the hallmark of adult LH-ALL, present in virtually all cases (98%). Strikingly, we detected TP53 mutations in posttreatment remission samples in 34% of patients. Single-cell proteogenomics of diagnosis and remission bone marrow samples evidenced a preleukemic, multilineage, TP53-mutant clone, reminiscent of age-related clonal hematopoiesis. SIGNIFICANCE We show that low-hypodiploid ALL is a frequent entity within B-ALL in older adults, relying on somatic TP53 biallelic alteration. Our study unveils a link between aging and low-hypodiploid ALL, with TP53-mutant clonal hematopoiesis representing a preleukemic reservoir that can give rise to aneuploidy and B-ALL. See related commentary by Saiki and Ogawa, p. 102. This article is highlighted in the In This Issue feature, p. 101

    Feasibility and safety of treating non-unions in tibia, femur and humerus with autologous, expanded, bone marrow-derived mesenchymal stromal cells associated with biphasic calcium phosphate biomaterials in a multicentric, non-comparative trial

    Get PDF
    Background: ORTHO-1 is a European, multicentric, first in human clinical trial to prove safety and feasibility after surgical implantation of commercially available biphasic calcium phosphate bioceramic granules associated during surgery with autologous mesenchymal stromal cells expanded from bone marrow (BM-hMSC) under good manufacturing practices, in patients with long bone pseudarthrosis. Methods: Twenty-eight patients with femur, tibia or humerus diaphyseal or metaphyso-diaphyseal non-unions were recruited and surgically treated in France, Germany, Italy and Spain with 100 or 200 million BM-hMSC/mL associated with 5–10 cc of bioceramic granules. Patients were followed up during one year. The investigational advanced therapy medicinal product (ATMP) was expanded under the same protocol in all four countries, and approved by each National Competent Authority. Findings: With safety as primary end-point, no severe adverse event was reported as related to the BM-hMSC. With feasibility as secondary end-point, the participating production centres manufactured the BM-hMSC as planned. The ATMP combined to the bioceramic was surgically delivered to the non-unions, and 26/28 treated patients were found radiologically healed at one year (3 out of 4 cortices with bone bridging). Interpretation: Safety and feasibility were clinically proven for surgical implantation of expanded autologous BM-hMSC with bioceramic. Funding: EU-FP7-HEALTH-2009, REBORNE Project (GA: 241876).The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/FP7-HEALTH-2009); REBORNE Project (GA: 241876

    Global Carbon Budget 2015

    Get PDF
    Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates as well as consistency within and among components, alongside methodology and data limitations. CO2 emissions from fossil fuels and industry (E-FF) are based on energy statistics and cement production data, while emissions from land-use change (E-LUC), mainly deforestation, are based on combined evidence from land-cover-change data, fire activity associated with deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (G(ATM)) is computed from the annual changes in concentration. The mean ocean CO2 sink (S-OCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in S-OCEAN is evaluated with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (S-LAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models forced by observed climate, CO2, and land-cover change (some including nitrogen-carbon interactions). We compare the mean land and ocean fluxes and their variability to estimates from three atmospheric inverse methods for three broad latitude bands. All uncertainties are reported as +/- 1 sigma, reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. For the last decade available (20052014), E-FF was 9.0 +/- 0.5 GtC yr(-1) E-LUC was 0.9 +/- 0.5 GtC yr(-1), GATM was 4.4 +/- 0.1 GtC yr(-1), S-OCEAN was 2.6 +/- 0.5 GtC yr(-1), and S LAND was 3.0 +/- 0.8 GtC yr(-1). For the year 2014 alone, E FF grew to 9.8 +/- 0.5 GtC yr(-1), 0.6% above 2013, continuing the growth trend in these emissions, albeit at a slower rate compared to the average growth of 2.2% yr(-1) that took place during 2005-2014. Also, for 2014, E-LUC was 1.1 +/- 0.5 GtC yr(-1), G(ATM) was 3.9 +/- 0.2 GtC yr(-1), S-OCEAN was 2.9 +/- 0.5 GtC yr(-1), and S-LAND was 4.1 +/- 0.9 GtC yr(-1). G(ATM) was lower in 2014 compared to the past decade (2005-2014), reflecting a larger S-LAND for that year. The global atmospheric CO2 concentration reached 397.15 +/- 0.10 ppm averaged over 2014. For 2015, preliminary data indicate that the growth in E-FF will be near or slightly below zero, with a projection of 0.6 [ range of 1.6 to C 0.5] %, based on national emissions projections for China and the USA, and projections of gross domestic product corrected for recent changes in the carbon intensity of the global economy for the rest of the world. From this projection of E-FF and assumed constant E LUC for 2015, cumulative emissions of CO2 will reach about 555 +/- 55 GtC (2035 +/- 205 GtCO(2)) for 1870-2015, about 75% from E FF and 25% from E LUC. This living data update documents changes in the methods and data sets used in this new carbon budget compared with previous publications of this data set (Le Quere et al., 2015, 2014, 2013). All observations presented here can be downloaded from the Carbon Dioxide Information Analysis Center (doi: 10.3334/CDIAC/GCP_2015)

    Bone marrow graft versus peripheral blood graft in haploidentical hematopoietic stem cells transplantation: a retrospective analysis in1344 patients of SFGM-TC registry.

    Full text link
    peer reviewedThe use of peripheral blood (PB) or bone marrow (BM) stem cells graft in haploidentical hematopoietic stem cell transplantation with post-transplant cyclophosphamide (PTCy) for graft-versus-host disease (GVHD) prophylaxis remains controversial. Moreover, the value of adding anti-thymoglobulin (ATG) to PTCy is unknown. A total of 1344 adult patients received an unmanipulated haploidentical transplant at 37 centers from 2012 to 2019 for hematologic malignancy. We compared the outcomes of patients according to the type of graft, using a propensity score analysis. In total population, grade II-IV and III-IV acute GVHD (aGVHD) were lower with BM than with PB. Grade III-IV aGVHD was lower with BM than with PB + ATG. All outcomes were similar in PB and PB + ATG groups. Then, in total population, adding ATG does not benefit the procedure. In acute leukemia, myelodysplastic syndrome and myeloproliferative syndrome (AL-MDS-MPS) subgroup receiving non-myeloablative conditioning, risk of relapse was twice greater with BM than with PB (51 vs. 22%, respectively). Conversely, risk of aGVHD was greater with PB (38% for aGVHD II-IV; 16% for aGVHD III-IV) than with BM (28% for aGVHD II-IV; 8% for aGVHD III-IV). In this subgroup with intensified conditioning regimen, risk of relapse became similar with PB and BM but risk of aGVHD III-IV remained higher with PB than with BM graft (HR = 2.0; range [1.17-3.43], p = 0.012)

    Global carbon budget 2019

    Get PDF
    Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere – the “global carbon budget” – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO2 emissions (EFF) are based on energy statistics and cement production data, while emissions from land use change (ELUC), mainly deforestation, are based on land use and land use change data and bookkeeping models. Atmospheric CO2 concentration is measured directly and its growth rate (GATM) is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN) and terrestrial CO2 sink (SLAND) are estimated with global process models constrained by observations. The resulting carbon budget imbalance (BIM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the last decade available (2009–2018), EFF was 9.5±0.5 GtC yr−1, ELUC 1.5±0.7 GtC yr−1, GATM 4.9±0.02 GtC yr−1 (2.3±0.01 ppm yr−1), SOCEAN 2.5±0.6 GtC yr−1, and SLAND 3.2±0.6 GtC yr−1, with a budget imbalance BIM of 0.4 GtC yr−1 indicating overestimated emissions and/or underestimated sinks. For the year 2018 alone, the growth in EFF was about 2.1 % and fossil emissions increased to 10.0±0.5 GtC yr−1, reaching 10 GtC yr−1 for the first time in history, ELUC was 1.5±0.7 GtC yr−1, for total anthropogenic CO2 emissions of 11.5±0.9 GtC yr−1 (42.5±3.3 GtCO2). Also for 2018, GATM was 5.1±0.2 GtC yr−1 (2.4±0.1 ppm yr−1), SOCEAN was 2.6±0.6 GtC yr−1, and SLAND was 3.5±0.7 GtC yr−1, with a BIM of 0.3 GtC. The global atmospheric CO2 concentration reached 407.38±0.1 ppm averaged over 2018. For 2019, preliminary data for the first 6–10 months indicate a reduced growth in EFF of +0.6 % (range of −0.2 % to 1.5 %) based on national emissions projections for China, the USA, the EU, and India and projections of gross domestic product corrected for recent changes in the carbon intensity of the economy for the rest of the world. Overall, the mean and trend in the five components of the global carbon budget are consistently estimated over the period 1959–2018, but discrepancies of up to 1 GtC yr−1 persist for the representation of semi-decadal variability in CO2 fluxes. A detailed comparison among individual estimates and the introduction of a broad range of observations shows (1) no consensus in the mean and trend in land use change emissions over the last decade, (2) a persistent low agreement between the different methods on the magnitude of the land CO2 flux in the northern extra-tropics, and (3) an apparent underestimation of the CO2 variability by ocean models outside the tropics. This living data update documents changes in the methods and data sets used in this new global carbon budget and the progress in understanding of the global carbon cycle compared with previous publications of this data set (Le QuĂ©rĂ© et al., 2018a, b, 2016, 2015a, b, 2014, 2013). The data generated by this work are available at https://doi.org/10.18160/gcp-2019 (Friedlingstein et al., 2019)
    • 

    corecore