

Figure 2. B- and NK-cell reconstitution after transplantation with NiCord, unCBT, and BMT.

70

The Role of Donor Selection for a Second Allogeneic Stem Cell Transplantation in Patients with AML Relapsing after a First Transplant; A Study on Behalf of the Acute Leukemia Working Party of EBMT

Avichai Shimoni MD¹, Myriam Labopin MD², Jürgen Finke MD³, Fabio Ciceri MD⁴, Eric Deconinck MD⁵, Nicolaus Kroger MD⁶, Martin Gramatzki MD⁷, Matthias Stelljes MD⁸, Didier Blaise MD⁹, Friedrich Stölzel MD¹⁰, Patrice Chevallier MD¹¹, Ernst Holler MD, PhD¹², Nathalie Fegueux MD¹³, Mohamad Mohty MD¹⁴, Arnon Nagler MD, MSc^{1, 1} The Chaim Sheba Medical Center, Tel-Hashomer, Division of Hematology and Bone Marrow Transplantation, Ramat-Gan, Israel; ² Department of Hematology and EBMT Paris study office / CEREST-TC, Saint Antoine Hospital, Paris, France; ³ Dept of Medicine, Haematology and Oncology, University Medical Center Freiburg, Freiburg, Germany; ⁴ Vita-Salute San Raffaele University, Milan, Italy; ⁵ Service d`Hématologie, Jean Minjoz Hospital, Besancon, France; ⁶ Bone Marrow Transplantation, Universitatsklinikum Hamburg-Eppendorf, Hamburg, Germany; ⁷ Division for Stem Cell Transplantation and Immunotherapy, University Hospital of Schleswig-Holstein, Kiel, Germany; ⁸ Department of Medicina A / Hematology and Oncology, University of Münster, Münster, Germany; ⁹ Hematology Department, Institut Paoli Calmettes, Marseille, France; ¹⁰ Department of Internal Medicine 1, Technical University Dresden, Dresden, Germany; 11 Hematologie, CHU NANTES, Nantes, France; ¹² Department of Hematology and Oncology, Internal Medicine III, University of Regensburg, Regensburg, Germany; ¹³ Centre Hospitalier Universitaire de Montpellier Montpellier, Montpellier, France; ¹⁴ Department of Haematology and EBMT Paris study office / CEREST-TC, Saint Antoine Hospital, INSERM UMR 938 and Université Pierre et Marie Curie, Paris, France

Introduction: Recurrent disease is the major cause of treatment failure after allogeneic stem cell transplantation (SCT) in patients with AML. Second SCT (SCT2) is a valid treatment option in this setting but outcome is relatively poor. Haploidentical (haplo) SCT is increasingly used over the last decade due to the introduction of non T-depleted methods. Prior studies have shown similar outcome when using the same or different HLA-matched donor for SCT2. However, there is relatively limited data on the use of haplo-donors in this setting.

Methods and Results: The study included 556 patients with AML relapsing after a first allogeneic SCT (SCT1) given in CR1 from sibling (sib, n= 294) or unrelated donor (UD, n=262) and given SCT2 during the years 2006-2016. The median age at SCT2 was 46 years (20-73). 247 patients were in CR2 (45%) and 309 had active leukemia (55%) at SCT2. The conditioning regimen for SCT1 was myeloablative (MAC, 66%) or reduced-intensity (RIC, 34%), and 41% and

59%, respectively for SCT2. Patients were divided into 3 groups based on the donor selected for SCT2; 1) same donor (n=163, sib/sib-112, UD/UD-51), 2) different matched donor (n=305, sib/different sib-44, sib/UD-93, UD/ different UD- 168), 3) haplo-donor (n=88, sib/haplo-45, UD/haplo-43). All haploSCT were non T-depleted. The 2-year leukemia-free survival (LFS) after SCT2 was 23.5%, 23.7% and 21.8%, respectively (unadjusted P=0.30). Multivariate analysis showed no effect of second donor type on subsequent relapse, hazard ratio (HR) 0.96 (P=0.83) and 1.20 (P=0.47) for different donor and haplo-donor compared to same donor, respectively. UD in SCT1, CR2 at SCT2 and chronic GVHD after SCT1 were associated with reduced relapse risk after SCT2, HR 0.70 (P=0.02), 0.60 (P=0.001) and 0.66 (P=0.03), respectively. Second donor type did predict for non-relapse mortality (NRM) after SCT2; HR 1.26 (P=0.41) and 2.18 (P=0.02) for different donor and haplo-donor compared to same donor, respectively. Advanced age and MAC in SCT1 also predicted for NRM, HR 1.40 (P<0.001) and 0.61 (P=0.04), respectively. The second donor predicted for LFS after SCT2; HR 1.05 (P=0.77) and 1.55 (P=0.03), respectively. Advanced age and SCT2 in CR2 predicted for LFS; HR 1.11 (P=0.06) and 0.66 (P=0.002), respectively. In all, there were no differences between same or different matched donors in SCT2 outcomes, but haploSCT2 was associated with higher NRM and lower LFS. The inferior outcome after SCT2 with haplo-donor was limited to patients given MAC in SCT1 and not observed in patients given RIC in SCT1.

Conclusions: Second SCT with the same donor or different matched donor is associated with similar outcomes in patients with relapsed AML after a first SCT. However, SCT2 with a haplo-donor is associated with higher NRM and lower LFS, mostly in patients given MAC in SCT1. Second haplo donor does not provide better GVL effect in this setting.

71

Starting Cyclosporine on Day Zero and Mycophenolate on Day + 1 in Unmanipulated Peripheral Blood Haplo Transplant with Cyclophosphamide Post-Transplantation Is Feasible, Abrogate the Severity of Cytokine Release Syndrome and Achieves a Very Low Rate of aGVHD Amado Karduss MD¹, Giovanny Ruiz MD², Rosendo Perez MD¹, Alejo Jimenez MD¹, Pedro Reyes MD¹, Rodolfo Gomez MD¹, Angelica Cardona Technician³. ¹ Bone Marrow Transplant, Instituto de Cancerologia, Medellin, Colombia; ² Bone Marrow Transplantation, Instituto de Cancerologia -Clinica las Americas, Medellin, Colombia; ³ Instituto de Cancerologia -Clinica las Americas, Medellin, Colombia

Introduction: The use of unmanipulated peripheral blood from haploidentical donors (UPB Haplo) with post transplantation cyclophosphamide (PT-Cy) is often associated with a higher incidence and severity of cytokine release syndrome (CRS) and aGVHD when it is compared with bone marrow source (BM haplo). Recently it has been published (1) a modification of PT-Cy protocol moving the day of administration of cyclosporine (CsA) and mycophenolate (MMF) from day +5 to zero and +1 and using BM haplo with encouraging results. With the aim to reduce the incidence of CRS and aGVHD we did the same but keeping UPB haplo as a cellular source.

Methods and patients: The conditioning used was fludarabine 150 mg/m², melphalan 100-120 mg/m², and TBI 200-400 cGy or the same but with busulfan 4 mg/kg instead of melphalan, the CsA began on day zero and continuous until d+180, MMF was administered from d+ 1 to d+ 60 and PT-Cy 50 mg/kg on days +3 and +4 (fig 1).