84 research outputs found

    Graphene-Based Nanocomposites for Energy Storage

    Get PDF
    Since the first report of using micromechanical cleavage method to produce graphene sheets in 2004, graphene/graphene-based nanocomposites have attracted wide attention both for fundamental aspects as well as applications in advanced energy storage and conversion systems. In comparison to other materials, graphene-based nanostructured materials have unique 2D structure, high electronic mobility, exceptional electronic and thermal conductivities, excellent optical transmittance, good mechanical strength, and ultrahigh surface area. Therefore, they are considered as attractive materials for hydrogen (H2) storage and high-performance electrochemical energy storage devices, such as supercapacitors, rechargeable lithium (Li)-ion batteries, Li–sulfur batteries, Li–air batteries, sodium (Na)-ion batteries, Na–air batteries, zinc (Zn)–air batteries, and vanadium redox flow batteries (VRFB), etc., as they can improve the efficiency, capacity, gravimetric energy/power densities, and cycle life of these energy storage devices. In this article, recent progress reported on the synthesis and fabrication of graphene nanocomposite materials for applications in these aforementioned various energy storage systems is reviewed. Importantly, the prospects and future challenges in both scalable manufacturing and more energy storage-related applications are discussed

    Oxygen evolution and corrosion behaviours of the porous Mn 5

    No full text

    SARS-CoV-2-on-Chip for Long COVID Management

    No full text
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a “wicked evil” in this century due to its extended progression and huge human mortalities. Although the diagnosis of SARS-CoV-2 viral infection is made simple and practical by employing reverse transcription polymerase chain reaction (RT-PCR) investigation, the process is costly, complex, time-consuming, and requires experts for testing and the constraints of a laboratory. Therefore, these challenges have raised the paradigm of on-site portable biosensors on a single chip, which reduces human resources and enables remote access to minimize the overwhelming burden on the existing global healthcare sector. This article reviews the recent advancements in biosensors for long coronavirus disease (COVID) management using a multitude of devices, such as point-of-care biosensors and lab-on-chip biosensors. Furthermore, it details the shift in the paradigm of SARS-CoV-2-on-chip biosensors from the laboratory to on-site detection with intelligent and economical operation, representing near-future diagnostic technologies for public health emergency management
    corecore