14 research outputs found

    Prospects for early top anti-top resonance searches in ATLAS

    Full text link
    Searches for signatures of new physics in top anti-top events at the LHC require efficient reconstruction of top quarks with a broad range of transverse momenta. Three new reconstruction schemes are developed to deal with the large variety of top decay topologies. Their performance on the lepton + jets final state is evaluated using a detailed simulation of signal and background processes. Compared to previous ATLAS studies, a much improved reconstruction efficiency is found over a large top anti-top invariant mass range. As a consequence, even in the earliest phase of the experiment, ATLAS is expected to significantly extend the mass reach of existing searches.Comment: 3 pages, contribution to the 21st Hadron Collider Physics Symposium (HCP 2010), Toronto, Canada, 23 - 27 August 201

    Search for top-antitop quark resonances with the ATLAS detector at the Large Hadron Collider

    No full text
    The intriguing nature of the top quark, by far the heaviest particle in the Stan- dard Model of particle physics, has motivated the development of many theoretical extensions predicting the existence of new massive particles decaying to a pair of top-antitop quarks. The production of these hypothetical particles in proton-proton collisions at the Large Hadron Collider would reveal itself as a resonance in the expected smooth distribution of the top-antitop quark invariant mass. This thesis presents a search for such a new heavy particle decaying to a pair of top-antitop quarks in the semi-leptonic nal state. The analyzed data sample amounts to a total of 4.6 fb−1 at a proton-proton collision center-of-mass energy of 7 TeV. Novel techniques speci cally tailored to the identi cation of the decay products of highly energetic top quarks are developed and used. No evidence for resonant production of pairs of top-antitop quarks is found and, as a result, constraints are set on two theoretical models. Upper limits on the production cross-section times branching ratio are established at a 95% credibility level for a leptophobic Z′ boson from the Topcolor model, and a Kaluza-Klein gluon from the Randall-Sundrum model. The Z′ boson and the Kaluza-Klein gluon are excluded to exist (at a 95% credibility level) in the mass ranges 0.8-1.65 TeV and 0.8-1.88 TeV, respectively. The constraints de- rived in this thesis on the two theoretical models are more stringent than the ones obtained at other experiments, thanks to the large center-of-mass energy and the dedicated high-energy top quark identi cation techniques used

    Search for top-antitop quark resonances with the ATLAS detector at the Large Hadron Collider

    No full text
    The intriguing nature of the top quark, by far the heaviest particle in the Standard Model of particle physics, has motivated the development of many theoretical extensions predicting the existence of new massive particles decaying to a pair of top-antitop quarks. The production of these hypothetical particles in proton-proton collisions at the Large Hadron Collider would reveal itself as a resonance in the expected smooth distribution of the top-antitop quark invariant mass. This thesis presents a search for such a new heavy particle decaying to a pair of top-antitop quarks in the semi-leptonic final state. The analyzed data sample amounts to a total of 4.6 fb−1 at a proton-proton collision center-of-mass energy of 7 TeV. Novel techniques specifically tailored to the identification of the decay products of highly energetic top quarks are developed and used. No evidence for resonant production of pairs of top-antitop quarks is found and, as a result, constraints are set on two theoretical models. Upper limits on the production cross-section times branching ratio are established at a 95% credibility level for a leptophobic Z ′ boson from the Topcolor model, and a Kaluza-Klein gluon from the Randall-Sundrum model. The Z ′ boson and the Kaluza-Klein gluon are excluded to exist (at a 95% credibility level) in the mass ranges 0.8-1.65 TeV and 0.8-1.88 TeV, respectively. The constraints derived in this thesis on the two theoretical models are more stringent than the ones obtained at other experiments, thanks to the large center-of-mass energy and the dedicated high-energy top quark identification techniques used

    Mechanisms Underlying the Initiation and Dynamics of Neuronal Filopodia

    No full text

    Search for Scalar Diphoton Resonances in the Mass Range 6560065-600 GeV with the ATLAS Detector in pppp Collision Data at s\sqrt{s} = 8 TeVTeV

    No full text
    A search for scalar particles decaying via narrow resonances into two photons in the mass range 65–600 GeV is performed using 20.3fb120.3\text{}\text{}{\mathrm{fb}}^{-1} of s=8TeV\sqrt{s}=8\text{}\text{}\mathrm{TeV} pppp collision data collected with the ATLAS detector at the Large Hadron Collider. The recently discovered Higgs boson is treated as a background. No significant evidence for an additional signal is observed. The results are presented as limits at the 95% confidence level on the production cross section of a scalar boson times branching ratio into two photons, in a fiducial volume where the reconstruction efficiency is approximately independent of the event topology. The upper limits set extend over a considerably wider mass range than previous searches

    Search for Higgs and ZZ Boson Decays to J/ψγJ/\psi\gamma and Υ(nS)γ\Upsilon(nS)\gamma with the ATLAS Detector

    No full text
    A search for the decays of the Higgs and ZZ bosons to J/ψγJ/\psi\gamma and Υ(nS)γ\Upsilon(nS)\gamma (n=1,2,3n=1,2,3) is performed with pppp collision data samples corresponding to integrated luminosities of up to 20.3fb120.3\mathrm{fb}^{-1} collected at s=8TeV\sqrt{s}=8\mathrm{TeV} with the ATLAS detector at the CERN Large Hadron Collider. No significant excess of events is observed above expected backgrounds and 95% CL upper limits are placed on the branching fractions. In the J/ψγJ/\psi\gamma final state the limits are 1.5×1031.5\times10^{-3} and 2.6×1062.6\times10^{-6} for the Higgs and ZZ bosons, respectively, while in the Υ(1S,2S,3S)γ\Upsilon(1S,2S,3S)\,\gamma final states the limits are (1.3,1.9,1.3)×103(1.3,1.9,1.3)\times10^{-3} and (3.4,6.5,5.4)×106(3.4,6.5,5.4)\times10^{-6}, respectively

    Measurements of the Total and Differential Higgs Boson Production Cross Sections Combining the H??????? and H???ZZ*???4??? Decay Channels at s\sqrt{s}=8??????TeV with the ATLAS Detector

    No full text
    Measurements of the total and differential cross sections of Higgs boson production are performed using 20.3~fb1^{-1} of pppp collisions produced by the Large Hadron Collider at a center-of-mass energy of s=8\sqrt{s} = 8 TeV and recorded by the ATLAS detector. Cross sections are obtained from measured HγγH \rightarrow \gamma \gamma and HZZ4H \rightarrow ZZ ^{*}\rightarrow 4\ell event yields, which are combined accounting for detector efficiencies, fiducial acceptances and branching fractions. Differential cross sections are reported as a function of Higgs boson transverse momentum, Higgs boson rapidity, number of jets in the event, and transverse momentum of the leading jet. The total production cross section is determined to be σppH=33.0±5.3(stat)±1.6(sys)pb\sigma_{pp \to H} = 33.0 \pm 5.3 \, ({\rm stat}) \pm 1.6 \, ({\rm sys}) \mathrm{pb}. The measurements are compared to state-of-the-art predictions.Measurements of the total and differential cross sections of Higgs boson production are performed using 20.3  fb-1 of pp collisions produced by the Large Hadron Collider at a center-of-mass energy of s=8  TeV and recorded by the ATLAS detector. Cross sections are obtained from measured H→γγ and H→ZZ*→4ℓ event yields, which are combined accounting for detector efficiencies, fiducial acceptances, and branching fractions. Differential cross sections are reported as a function of Higgs boson transverse momentum, Higgs boson rapidity, number of jets in the event, and transverse momentum of the leading jet. The total production cross section is determined to be σpp→H=33.0±5.3 (stat)±1.6 (syst)  pb. The measurements are compared to state-of-the-art predictions.Measurements of the total and differential cross sections of Higgs boson production are performed using 20.3 fb1^{-1} of pppp collisions produced by the Large Hadron Collider at a center-of-mass energy of s=8\sqrt{s} = 8 TeV and recorded by the ATLAS detector. Cross sections are obtained from measured HγγH \rightarrow \gamma \gamma and HZZ4H \rightarrow ZZ ^{*}\rightarrow 4\ell event yields, which are combined accounting for detector efficiencies, fiducial acceptances and branching fractions. Differential cross sections are reported as a function of Higgs boson transverse momentum, Higgs boson rapidity, number of jets in the event, and transverse momentum of the leading jet. The total production cross section is determined to be σppH=33.0±5.3(stat)±1.6(sys)pb\sigma_{pp \to H} = 33.0 \pm 5.3 \, ({\rm stat}) \pm 1.6 \, ({\rm sys}) \mathrm{pb}. The measurements are compared to state-of-the-art predictions

    Finska tingsdomares bedömningar av partsutlåtanden givna på plats i rätten eller via videokonferens

    Get PDF
    Professionals within the judicial system sometimes believe they can assess whether someone is lying or not based on cues such as body language and emotional expression. Research has, however, shown that this is impossible. The Finnish Supreme Court has also given rulings in accordance with this demonstrated fact. There has also been previous research on whether party or witness statements are assessed differently in court depending on whether they are given live, via videoconference, or via prerecorded video. In the present study, we investigated how a Finnish sample of district judges (N=47) assigned probative value to different variables concerning the statement or the statement giver, such as body language and emotional expression. We also investigated the connection between the judges’ beliefs about the relevance of body language and emotional expression and their preference for live statements or statements via videoconference. The judges reported assigning equal amounts of probative value to statements given live and statements given via videoconference. However, judges found it easier to detect deception live, and this preference correlated with how relevant they thought body language is when assessing the probative value of the statement. In other words, a slight bias to assess live statements more favorably than statements given via videoconference might still exist. More effort needs to be put into making judges and Supreme Courts aware of robust scientific results that have been the subject of decades of research, such as the fact that one cannot assess whether someone is lying or not based on cues such as body language

    Search for Higgs and Z Boson Decays to J/ψγJ/\psi\gamma and Υ(nS)γ\Upsilon(nS)\gamma with the ATLAS Detector

    No full text
    A search for the decays of the Higgs and Z bosons to J/ψγ and ϒ(nS)γ (n=1,2,3) is performed with pp collision data samples corresponding to integrated luminosities of up to 20.3 fb-1 collected at s=8 TeV with the ATLAS detector at the CERN Large Hadron Collider. No significant excess of events is observed above expected backgrounds and 95% C.L. upper limits are placed on the branching fractions. In the J/ψγ final state the limits are 1.5×10-3 and 2.6×10-6 for the Higgs and Z boson decays, respectively, while in the ϒ(1S,2S,3S)γ final states the limits are (1.3,1.9,1.3)×10-3 and (3.4,6.5,5.4)×10-6, respectively
    corecore