283 research outputs found

    Direct CP Violation in Hadronic B Decays

    Full text link
    There are different approaches for the hadronic B decay calculations, recently. In this paper, we upgrade three of them, namely factorization, QCD factorization and the perturbative QCD approach based on kTk_T factorization, by using new parameters and full wave functions. Although they get similar results for many of the branching ratios, the direct CP asymmetries predicted by them are different, which can be tested by recent experimental measurements of B factories.Comment: 11 pages, 3 figures, revtex4, Talk given at the Workshop on the Frontiers of Theoretical Physics and Cross-Disciplinary, NSFC, Beijing, March 200

    Nonfactorizable contributions to BD()MB \to D^{(*)} M decays

    Full text link
    While the factorization assumption works well for many two-body nonleptonic BB meson decay modes, the recent measurement of BˉD()0M0\bar B\to D^{(*)0}M^0 with M=πM=\pi, ρ\rho and ω\omega shows large deviation from this assumption. We analyze the BD()MB\to D^{(*)}M decays in the perturbative QCD approach based on kTk_T factorization theorem, in which both factorizable and nonfactorizable contributions can be calculated in the same framework. Our predictions for the Bauer-Stech-Wirbel parameters, a2/a1=0.43±0.04|a_2/a_1|= 0.43\pm 0.04 and Arg(a2/a1)42Arg(a_2/a_1)\sim -42^\circ and a2/a1=0.47±0.05|a_2/a_1|= 0.47\pm 0.05 and Arg(a2/a1)41Arg(a_2/a_1)\sim -41^\circ, are consistent with the observed BDπB\to D\pi and BDπB\to D^*\pi branching ratios, respectively. It is found that the large magnitude a2|a_2| and the large relative phase between a2a_2 and a1a_1 come from color-suppressed nonfactorizable amplitudes. Our predictions for the Bˉ0D()0ρ0{\bar B}^0\to D^{(*)0}\rho^0, D()0ωD^{(*)0}\omega branching ratios can be confronted with future experimental data.Comment: 25 pages with Latex, axodraw.sty, 6 figures and 5 tables, Version published in PRD, Added new section 5 and reference

    Charm multiplicity and the branching ratios of inclusive charmless b quark decays in the general two-Higgs-doublet models

    Full text link
    In the framework of general two-Higgs-doublet models, we calculate the branching ratios of various inclusive charmless b decays by using the low energy effective Hamiltonian including next-to-leading order QCD corrections, and examine the current status and the new physics effects on the determination of the charm multiplicity ncn_c and semileptonic branching ratio BSLB_{SL}. Within the considered parameter space, the enhancement to the ratio BR(bsg)BR(b \to s g) due to the charged-Higgs penguins can be as large as a factor of 8 (3) in the model III (II), while the ratio BR(bnocharm)BR(b \to no charm) can be increased from the standard model prediction of 2.49% to 4.91% (2.99%) in the model III (II). Consequently, the value of BSLB_{SL} and ncn_c can be decreased simultaneously in the model III. The central value of BSLB_{SL} will be lowered slightly by about 0.003, but the ratio ncn_c can be reduced significantly from the theoretical prediction of nc=1.28±0.05n_c= 1.28 \pm 0.05 in the SM to nc=1.23±0.05n_c= 1.23 \pm 0.05, 1.18±0.051.18 \pm 0.05 for mH+=200,100m_{H^+}=200, 100 GeV, respectively. We find that the predicted ncn_c and the measured ncn_c now agree within roughly one standard deviation after taking into account the effects of gluonic charged Higgs penguins in the model III with a relatively light charged Higgs boson.Comment: 25 pages, Latex file, axodraw.sty, 6 figures. Final version to be published in Phys.Rev.

    Effects of Acrylamide on the Activity and Structure of Human Brain Creatine Kinase

    Get PDF
    Acrylamide is widely used worldwide in industry and it can also be produced by the cooking and processing of foods. It is harmful to human beings, and human brain CK (HBCK) has been proposed to be one of the important targets of acrylamide. In this research, we studied the effects of acrylamide on HBCK activity, structure and the potential binding sites. Compared to CKs from rabbit, HBCK was fully inactivated at several-fold lower concentrations of acrylamide, and exhibited distinct properties upon acrylamide-induced inactivation and structural changes. The binding sites of acrylamide were located at the cleft between the N- and C-terminal domains of CK, and Glu232 was one of the key binding residues. The effects of acrylamide on CK were proposed to be isoenzyme- and species-specific, and the underlying molecular mechanisms were discussed

    Observation of a ppb mass threshoud enhancement in \psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) decay

    Full text link
    The decay channel ψπ+πJ/ψ(J/ψγppˉ)\psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) is studied using a sample of 1.06×1081.06\times 10^8 ψ\psi^\prime events collected by the BESIII experiment at BEPCII. A strong enhancement at threshold is observed in the ppˉp\bar{p} invariant mass spectrum. The enhancement can be fit with an SS-wave Breit-Wigner resonance function with a resulting peak mass of M=186113+6(stat)26+7(syst)MeV/c2M=1861^{+6}_{-13} {\rm (stat)}^{+7}_{-26} {\rm (syst)} {\rm MeV/}c^2 and a narrow width that is Γ<38MeV/c2\Gamma<38 {\rm MeV/}c^2 at the 90% confidence level. These results are consistent with published BESII results. These mass and width values do not match with those of any known meson resonance.Comment: 5 pages, 3 figures, submitted to Chinese Physics

    Spin dynamics in semiconductors

    Full text link
    This article reviews the current status of spin dynamics in semiconductors which has achieved a lot of progress in the past years due to the fast growing field of semiconductor spintronics. The primary focus is the theoretical and experimental developments of spin relaxation and dephasing in both spin precession in time domain and spin diffusion and transport in spacial domain. A fully microscopic many-body investigation on spin dynamics based on the kinetic spin Bloch equation approach is reviewed comprehensively.Comment: a review article with 193 pages and 1103 references. To be published in Physics Reports

    Quantum thermal transport in nanostructures

    Full text link
    In this colloquia review we discuss methods for thermal transport calculations for nanojunctions connected to two semi-infinite leads served as heat-baths. Our emphases are on fundamental quantum theory and atomistic models. We begin with an introduction of the Landauer formula for ballistic thermal transport and give its derivation from scattering wave point of view. Several methods (scattering boundary condition, mode-matching, Piccard and Caroli formulas) of calculating the phonon transmission coefficients are given. The nonequilibrium Green's function (NEGF) method is reviewed and the Caroli formula is derived. We also give iterative methods and an algorithm based on a generalized eigenvalue problem for the calculation of surface Green's functions, which are starting point for an NEGF calculation. A systematic exposition for the NEGF method is presented, starting with the fundamental definitions of the Green's functions, and ending with equations of motion for the contour ordered Green's functions and Feynman diagrammatic expansion. In the later part, we discuss the treatments of nonlinear effects in heat conduction, including a phenomenological expression for the transmission, NEGF for phonon-phonon interactions, molecular dynamics (generalized Langevin) with quantum heat-baths, and electron-phonon interactions. Some new results are also shown. We also briefly review the experimental status of the thermal transport measurements in nanostructures.Comment: 24 pages, 10 figures, over 200 reference

    The B>XsgammagammaB -> X_s gamma gamma decay in the standard model and the general two-Higgs-doublet model

    Full text link
    Based on the low-energy effective Hamiltonian, we calculate the new physics corrections to the branching ratio and the differential distributions of the rare decay BXsγγB \to X_s \gamma \gamma induced by the new gluonic and electroweak charged-Higgs penguin diagrams in the general two-Higgs-doublet model with the restriction λijU,D=0\lambda_{ij}^{U,D}=0 for iji\neq j. Within the considered parameter space, we see the following: (a) the standard model predictions of B(BXsγγ){\cal B}(B \to X_s \gamma \gamma) and AFBA_{FB} have a moderate msm_s dependence; (b) in model III, the prediction of the branching ratio B(BXsγγ){\cal B}(B \to X_s \gamma \gamma) ranges from one third to three times of the standard model prediction, but is highly correlated with that of (BXsγ){\cal}(B \to X_s \gamma); (c) the new physics enhancement to the branching ratio B(BXsγγ){\cal B}(B \to X_s \gamma \gamma) in model II can be as large as (3050)(30-50)%; (d) the contribution from 1PR diagrams is dominant and hence four normalized differential distributions are insensitive to the variation of scale μ\mu and possible new physics corrections; (e) due to the smallness of its decay rate and the long-distance background, the BXsγγB \to X_s \gamma \gamma decay is not a better process in detecting new physics than the BXsγB \to X_s \gamma decay.Comment: Latex file, 27 pages with 17 ps and eps figures. Accepted for publication in Phys.Rev.

    Study on the rare radiative decay BcDsγB_c \to D_s^*\gamma in the standard model and multiscale walking technicolor model

    Full text link
    Applying the perturbative QCD ( PQCD ) method, we study the decay BcDsγB_c\rightarrow D_s^*\gamma in the standard model and multiscale walking technicolor model. In the SM, we find that the contribution of weak annihilation is more important than that of the electromagnetic penguin. The presence of Pseudo-Goldstone-Bosons in the MWTCM leads to a large enhancement in the rate of BcDsγB_c\rightarrow D_s^*\gamma, but this model is in conflict with the branching ratio of ZbbZ\rightarrow b\overline b ( RbR_b ) and the CLEO data on the branching ratio BR ( bsγb\rightarrow s\gamma ). If topcolor is further introduced, the calculated results in the topcolor assisted MWTCM can be suppressed and be in agreement with the CLEO data for a certain range of the parameters.Comment: 16 pages, Latex, no macros, 1 figure(in Latex), hard copy is available upon request. to appear in Phys. Rev.

    Combination of Chinese Herbal Medicines and Conventional Treatment versus Conventional Treatment Alone in Patients with Acute Coronary Syndrome after Percutaneous Coronary Intervention (5C Trial): An Open-Label Randomized Controlled, Multicenter Study

    Get PDF
    Aims. To evaluate the efficacy of Chinese herbal medicines (CHMs) plus conventional treatment in patients with acute coronary syndrome (ACS) after percutaneous coronary intervention (PCI). Methods and Results. Participants (n=808) with ACS who underwent PCI from thirteen hospitals of mainland China were randomized into two groups: CHMs plus conventional treatment group (treatment group) or conventional treatment alone group (control group). All participants received conventional treatment, and participants in treatment group additionally received CHMs for six months. The primary endpoint was the composite of cardiac death, nonfatal recurrent MI, and ischemia-driven revascularization. Secondary endpoint was the composite of readmission for ACS, stroke, or congestive heart failure. The safety endpoint involved occurrence of major bleeding events. The incidence of primary endpoint was 2.7% in treatment group versus 6.2% in control group (HR, 0.43; 95% CI, 0.21 to 0.87; P=0.015). The incidence of secondary endpoint was 3.5% in treatment group versus 8.7% in control group (HR, 0.39; 95% CI, 0.21 to 0.72; P=0.002). No major bleeding events were observed in any participant. Conclusion. Treatment with CHMs plus conventional treatment further reduced the occurrence of cardiovascular events in patients with ACS after PCI without increasing risk of major bleeding
    corecore