120 research outputs found

    Der Einfluss von Social-Media-Aktivitäten auf den Unternehmenswert

    Get PDF
    Unternehmen investieren Zeit, Geld, Wissen und Personal für den Einsatz von Social-Media-Aktivitäten. Die Rendite, die sie mit diesen Investitionen erzielen, ist den meisten Betrieben unbekannt. Aus diesem Grund untersucht die vorliegende Forschungsarbeit mittels konzeptioneller und quantitativer Zusammenhangsanalysen sowie einer empirischen Untersuchung den Einfluss von Social-Media-Aktivitäten auf den Unternehmenswert. Zur Beantwortung der Forschungsfragen werden eine Literaturanalyse, eine auf drei Monate beschränkte quantitative Untersuchung am Kapitalmarkt, sowie eine Online-Umfrage und Experteninterviews mit Analysten und Social-Media-Fachleuten durchgeführt. Die Literaturanalyse zeigt, dass keine direkten konzeptionellen Zusammenhänge zwischen Social-Media-Aktivitäten und der Unternehmensbewertung existieren. Allerdings können Social-Media-Aktivitäten über eine Vielzahl von Einsatzmöglichkeiten auf fünf übergeordnete Faktoren einwirken, die indirekt den Unternehmenswert beeinflussen. Diese Einflussfaktoren werden im Einzelnen aufgezeigt, während darauf hingewiesen wird, dass die Identifizierung des in diesem Zusammenhang entstandenen positiven Einflusses von Social-Media-Aktivitäten und die Messung des betriebswirtschaftlichen Mehrwerts auf den Unternehmenswert vom Grad der digitalen Maturität sowie der Social-Media-Verankerung des Betriebs abhängig sind. Für die Überprüfung der ersten Hypothese wurden Korrelations- und multiple Regressionsanalysen eingesetzt, die darauf hindeuten, dass während dem Untersuchungszeitraum zwischen der Anzahl der Follower/Abonnenten von vier Social-Media-Plattformen und den Aktienkursen der 20 SMI-Unternehmen keine signifikanten Zusammenhänge existieren. Die Gruppenanalyse untersuchte die zweite Hypothese anhand eines t-Tests für unabhängige Stichproben mit dem Ziel die Frage zu beantworten, ob Unternehmen mit einer überdurchschnittlichen Rendite einen überdurchschnittlichen Zuwachs an Reichweite in Form von Followern/Abonnenten auf Social Media erzielen. Die Resultate deuten auf keine signifikanten Unterschiede zwischen Unternehmen mit hoher oder niedriger Rendite hinsichtlich des Zuwachses von Followern/Abonnenten hin. Die Untersuchungsergebnisse aus der Online-Umfrage und den Experteninterviews mit Analysten legen dar, dass die gegenwärtige Berücksichtigung von Social-Media-Aktivitäten und -Kennzahlen von SMI-Unternehmen in der Bewertungspraxis als gering einzustufen ist. Analysten verschaffen sich über soziale Medien einen Gesamteindruck der Online-Präsenz des Unternehmens. Des Weiteren vernetzen sie sich mit dem Management der Unternehmen auf Social-Media-Plattformen, um unterjährig auf dem Laufenden bleiben und vertiefte Einblicke ins Unternehmen zu erhalten. Die Anzahl Follower/Abonnenten und Suchtrends von Google Analytics bieten Referenzwerte, um sie einer Vergleichsgruppe gegenüberzustellen, was die Prognostizierung der Online-Umsätze unterstützt. Somit ist die indirekte sowie vielschichtige Wirkung von Social-Media-Aktivitäten über einen längeren Zeitraum auf den Unternehmenswert als einflussreich zu beurteilen und zahlt sich für Betriebe aus

    Sodium iron EDTA and ascorbic acid, but not polyphenol oxidase treatment, counteract the strong inhibitory effect of polyphenols from brown sorghum on the absorption of fortification iron in young women

    Get PDF
    In addition to phytate, polyphenols (PP) might contribute to low Fe bioavailability from sorghum-based foods. To investigate the inhibitory effects of sorghum PP on Fe absorption and the potential enhancing effects of ascorbic acid (AA), NaFeEDTA and the PP oxidase enzyme laccase, we carried out three Fe absorption studies in fifty young women consuming dephytinised Fe-fortified test meals based on white and brown sorghum varieties with different PP concentrations. Fe absorption was measured as the incorporation of stable Fe isotopes into erythrocytes. In study 1, Fe absorption from meals with 17mg PP (8·5%) was higher than that from meals with 73mg PP (3·2%) and 167mg PP (2·7%; P<0·001). Fe absorption from meals containing 73 and 167mg PP did not differ (P=0·9). In study 2, Fe absorption from NaFeEDTA-fortified meals (167mg PP) was higher than that from the same meals fortified with FeSO4 (4·6 v. 2·7%; P<0·001), but still it was lower than that from FeSO4-fortified meals with 17mg PP (10·7%; P<0·001). In study 3, laccase treatment decreased the levels of PP from 167 to 42mg, but it did not improve absorption compared with that from meals with 167mg PP (4·8 v. 4·6%; P=0·4), whereas adding AA increased absorption to 13·6% (P<0·001). These findings suggest that PP from brown sorghum contribute to low Fe bioavailability from sorghum foods and that AA and, to a lesser extent, NaFeEDTA, but not laccase, have the potential to overcome the inhibitory effect of PP and improve Fe absorption from sorghum food

    Efficacy of iron-biofortified crops

    Get PDF
    Biofortification aims to increase the content of micronutrients in staple crops without sacrificing agronomic yield, making the new varieties attractive to farmers. Food staples that provide a major energy supply in low- and middle-income populations are the primary focus. The low genetic variability of iron in the germplasm of most cereal grains is a major obstacle on the path towards nutritional impact with these crops, which is solvable only by turning to transgenic approaches. However, biofortified varieties of common beans and pearl millet have been developed successfully and made available with iron contents as high as 100 mg/kg and 80 mg/kg, respectively, two to five times greater than the levels in the regular varieties. This brief review summarizes the research to date on the bioavailability and efficacy of iron-biofortified crops, highlights their potential and limitations, and discusses the way forward with multiple biofortified crop approaches suitable for diverse cultures and socio-economic milieu. Like post-harvest iron fortification, these biofortified combinations might provide enough iron to meet the additional iron needs of many iron deficient women and children that are not covered at present by their traditional diets.Keywords: Biofortification, Iron, Beans, Pearl millet, Rice, Polyphenols, Phytic acid, Anemia, Efficacy, Nutrition-Agriculture linkage

    Nutritional status and intestinal parasites among young children from pastoralist communities of the Ethiopian Somali region

    Get PDF
    Pastoralist children in the Ethiopian Somali Regional State (ESRS) are at high risk for undernutrition and intestinal parasitic infections (IPIs). We assessed the nutritional status and its association with IPIs in 500 children <5 years of age in a clustered cross-sectional study in Adadle district, ESRS. Stool samples were microscopically examined for IPIs and biomarkers for iron and vitamin A status, anthropometry, and food variety score (FVS) were assessed. Median (interquartile range [IQR]) FVS was 2.0 (2.0, 4.0), and 35% of children were exclusively breastfed up to age 6 months. Prevalence of stunting, wasting, underweight and mid-upper arm circumference (MUAC) <12.5 cm was 30, 34, 40, and 16%, respectively. Median (IQR) haemoglobin, ferritin, and retinol-binding protein concentrations were 9.5 g dL; -1; (8.2, 10.9), 6.2 ÎĽg L; -1; (4.0, 10.2), and 0.8 ÎĽmol L; -1; (0.67, 0.91), respectively. Prevalence of anaemia, iron, and vitamin A deficiency was 75, 91, and 30%, respectively. IPIs' prevalence was 47%; the most prevalent IPIs were Giardia lamblia (22%) and Ascaris lumbricoides (15%). Giardial infections but not A. lumbricoides increased the risk for MUAC 2 or with exclusive breastfeeding up to 6 months, respectively. Undernutrition and IPIs are alarmingly high in <5 years of age children in ESRS. Giardial infections and low nutritional adequacy of the diet seem to be major contributing factors to the precarious nutritional status and should be addressed by appropriate interventions

    Iron homeostasis during anemia of inflammation: a prospective study in patients with tuberculosis.

    Get PDF
    Anemia of inflammation is a hallmark of tuberculosis. Factors controlling iron metabolism during anemia of inflammation and its resolution are uncertain. Whether iron supplements should be given during anti-tuberculosis treatment to support Hb recovery is unclear. Before and during treatment of tuberculosis, we assessed iron kinetics, and changes in inflammation and iron metabolism indices. In a 26-wk prospective study, Tanzanian adults with tuberculosis (n=18) were studied before treatment and then every two weeks during treatment; oral and intravenous iron tracers were administered before treatment, after intensive phase (8/12 wk) and complete treatment (24 wk); no iron supplements were given. Before treatment, hepcidin and erythroferrone (ERFE) were greatly elevated, erythrocyte iron utilization was high (~80%) and iron absorption was negligible (<1%). During treatment, hepcidin and IL-6 decreased ~70% after only 2 wk (p<0.001); in contrast, ERFE did not significantly decrease until 8 wk (p<0.01). ERFE and IL-6 were the main opposing determinants of hepcidin (p<0.05) and greater ERFE was associated with reticulocytosis and hemoglobin (Hb) repletion (p<0.01). Dilution of baseline tracer concentration was 2.6-fold higher during intensive phase treatment (p<0.01) indicating enhanced erythropoiesis. After treatment completion, iron absorption increased ~20-fold (p<0.001); Hb increased ~25% (p<0.001). In tuberculosis-associated anemia of inflammation, our findings suggest elevated ERFE is unable to suppress hepcidin and iron absorption is negligible. During treatment, as inflammation resolves, ERFE may remain elevated, contributing to hepcidin suppression and Hb repletion. Iron is well-absorbed only after tuberculosis treatment and supplementation should be reserved for patients remaining anemic after treatment. (ClinicalTrials.gov Identifier:NCT02176772)

    Can an Integrated Approach Reduce Child Vulnerability to Anaemia? Evidence from Three African Countries.

    Get PDF
    Addressing the complex, multi-factorial causes of childhood anaemia is best done through integrated packages of interventions. We hypothesized that due to reduced child vulnerability, a "buffering" of risk associated with known causes of anaemia would be observed among children living in areas benefiting from a community-based health and nutrition program intervention. Cross-sectional data on the nutrition and health status of children 24-59 mo (N = 2405) were obtained in 2000 and 2004 from program evaluation surveys in Ghana, Malawi and Tanzania. Linear regression models estimated the association between haemoglobin and immediate, underlying and basic causes of child anaemia and variation in this association between years. Lower haemoglobin levels were observed in children assessed in 2000 compared to 2004 (difference -3.30 g/L), children from Tanzania (-9.15 g/L) and Malawi (-2.96 g/L) compared to Ghana, and the youngest (24-35 mo) compared to oldest age group (48-59 mo; -5.43 g/L). Children who were stunted, malaria positive and recently ill also had lower haemoglobin, independent of age, sex and other underlying and basic causes of anaemia. Despite ongoing morbidity, risk of lower haemoglobin decreased for children with malaria and recent illness, suggesting decreased vulnerability to their anaemia-producing effects. Stunting remained an independent and unbuffered risk factor. Reducing chronic undernutrition is required in order to further reduce child vulnerability and ensure maximum impact of anaemia control programs. Buffering the impact of child morbidity on haemoglobin levels, including malaria, may be achieved in certain settings

    Factors influencing micronutrient bioavailability in biofortified crops

    Get PDF
    Dietary and human factors have been found to be the major factors influencing the bioavailability of micronutrients, such as provitamin A carotenoid (pVAC), iron, and zinc, in biofortified crops. Dietary factors are related to food matrix structure and composition. Processing can improve pVAC bioavailability by disrupting the food matrix but can also result in carotenoid losses. By degrading antinutrients, such as phytate, processing can also enhance mineral bioavailability. In in vivo interventions, biofortified crops have been shown to be overall efficacious in reducing micronutrient deficiency, with bioconversion factors varying between 2.3:1 and 10.4:1 for trans-β-carotene and amounts of iron and zinc absorbed varying between 0.7 and 1.1 mg/day and 1.1 and 2.1 mg/day, respectively. Micronutrient bioavailability was dependent on the crop type and the presence of fat for pVACs and on antinutrients for minerals. In addition to dietary factors, human factors, such as inflammation and disease, can affect micronutrient status. Understanding the interactions between micronutrients is also essential, for example, the synergic effect of iron and pVACs or the competitive effect of iron and zinc. Future efficacy trials should consider human status and genetic polymorphisms linked to interindividual variations

    Iron absorption from iron-biofortified sweetpotato is higher than regular sweetpotato in Malawian women while iron absorption from regular and iron-biofortified potato is high in Peruvian women

    Get PDF
    Background: Sweetpotato and potato are fast-maturing staple crops and widely consumed in low- and middle-income countries. Conventional breeding to biofortify these crops with iron could improve iron intakes. To our knowledge, iron absorption from sweetpotato and potato has not been assessed. Objective: The aim was to assess iron absorption from regular and iron-biofortified orange-fleshed sweetpotato in Malawi and yellow-fleshed potato and iron-biofortified purple-fleshed potato in Peru. Methods: We conducted 2 randomized, multiple-meal studies in generally healthy, iron-depleted women of reproductive age. Malawian women (n = 24) received 400 g regular or biofortified sweetpotato test meals and Peruvian women (n = 35) received 500 g regular or biofortified potato test meals. Women consumed the meals at breakfast for 2 wk and were then crossed over to the other variety. We labeled the test meals with 57Fe or 58Fe and measured cumulative erythrocyte incorporation of the labels 14 d after completion of each test-meal sequence to calculate iron absorption. Iron absorption was compared by paired-sample t tests. Results: The regular and biofortified orange-fleshed sweetpotato test meals contained 0.55 and 0.97 mg Fe/100 g. Geometric mean (95% CI) fractional iron absorption (FIA) was 5.82% (3.79%, 8.95%) and 6.02% (4.51%, 8.05%), respectively (P = 0.81), resulting in 1.9-fold higher total iron absorption (TIA) from biofortified sweetpotato (P < 0.001). The regular and biofortified potato test meals contained 0.33 and 0.69 mg Fe/100 g. FIA was 28.4% (23.5%, 34.2%) from the regular yellow-fleshed and 13.3% (10.6%, 16.6%) from the biofortified purple-fleshed potato meals, respectively (P < 0.001), resulting in no significant difference in TIA (P = 0.88). Conclusions: FIA from regular yellow-fleshed potato was remarkably high, at 28%. Iron absorbed from both potato test meals covered 33% of the daily absorbed iron requirement for women of reproductive age, while the biofortified orange-fleshed sweetpotato test meal covered 18% of this requirement. High polyphenol concentrations were likely the major inhibitors of iron absorption. These trials were registered at www.clinicaltrials.gov as NCT03840031 (Malawi) and NCT04216030 (Peru)

    Worldwide genetic diversity for mineral element concentrations in rice grain

    Get PDF
    With the aim of identifying rice (Oryza spp.) germplasm having enhanced grain nutritional value, the mineral nutrient and trace element concentrations (or ionome) of whole (unmilled) grains from a set of 1763 rice accessions of diverse geographic and genetic origin were evaluated. Seed for analysis of P, Mg, K, S, Ca, As, Cd, Co, Cu, Fe, Mn, Mo, Ni, Rb, Sr, and Zn concentrations by inductively coupled plasma mass spectrometry was produced over 2 yr in Beaumont, TX, under both flooded and unflooded watering regimes. The distributions of all element concentrations analyzed were skewed toward higher concentration. A significant portion of this ionomic variation has a genetic basis (broad sense heritabilities 0.14–0.75), indicating an ability to breed for improved grain concentration of all elements except possibly Ni. Variation in grain elemental concentrations was not strongly associated with plant height, heading time, or grain shape, suggesting these physiological factors are not of primary importance in controlling ionomic variation in rice grain. Accessions high in specific elements were sometimes found to have similar genetic or geographic origins, suggesting they share a heritable mechanism underlying their enhanced ionomes. For example, accessions with high Ca, Mg, or K were more common in the indica than in the japonica subgroup; low As was most common among temperate japonica accessions; and several lines high in Mo originated in Malaysia or adjacent Brunei

    Effects of long-term weekly iron and folic acid supplementation on lower genital tract infection - a double blind, randomised controlled trial in Burkina Faso

    Get PDF
    BACKGROUND: Provision of routine iron supplements to prevent anaemia could increase the risk for lower genital tract infections as virulence of some pathogens depends on iron availability. This trial in Burkina Faso assessed whether weekly periconceptional iron supplementation increased the risk of lower genital tract infection in young non-pregnant and pregnant women. METHODS: Genital tract infections were assessed within a double blind, controlled, non-inferiority trial of malaria risk among nulliparous women, randomised to receive either iron and folic acid or folic acid alone, weekly, under direct observation for 18 months. Women conceiving during this period entered the pregnancy cohort. End assessment (FIN) for women remaining non-pregnant was at 18 months. For the pregnancy cohort, end assessment was at the first scheduled antenatal visit (ANC1). Infection markers included Nugent scores for abnormal flora and bacterial vaginosis (BV), T. vaginalis PCR, vaginal microbiota, reported signs and symptoms, and antibiotic and anti-fungal prescriptions. Iron biomarkers were assessed at baseline, FIN and ANC1. Analysis compared outcomes by intention to treat and in iron replete/deficient categories. RESULTS: A total of 1954 women (mean 16.8 years) were followed and 478 (24.5%) became pregnant. Median supplement adherence was 79% (IQR 59-90%). Baseline BV prevalence was 12.3%. At FIN and ANC1 prevalence was 12.8% and 7.0%, respectively (P < 0.011). T. vaginalis prevalence was 4.9% at FIN and 12.9% at ANC1 (P < 0.001). BV and T. vaginalis prevalence and microbiota profiles did not differ at trial end-points. Iron-supplemented non-pregnant women received more antibiotic treatments for non-genital infections (P = 0.014; mainly gastrointestinal infections (P = 0.005), anti-fungal treatments for genital infections (P = 0.014) and analgesics (P = 0.008). Weekly iron did not significantly reduce iron deficiency prevalence. At baseline, iron-deficient women were more likely to have normal vaginal flora (P = 0.016). CONCLUSIONS: Periconceptional weekly iron supplementation of young women did not increase the risk of lower genital tract infections but did increase general morbidity in the non-pregnant cohort. Unabsorbed gut iron due to malaria could induce enteric infections, accounting for the increased administration of antibiotics and antifungals in the iron-supplemented arm. This finding reinforces concerns about routine iron supplementation in highly malarious areas
    • …
    corecore